scholarly journals Modal logic with non-deterministic semantics: Part I—Propositional case

2019 ◽  
Vol 28 (3) ◽  
pp. 281-315
Author(s):  
Marcelo E Coniglio ◽  
Fariñas Del Cerro Luis ◽  
Marques Peron Newton

Abstract Dugundji proved in 1940 that most parts of standard modal systems cannot be characterized by a single finite deterministic matrix. In the eighties, Ivlev proposed a semantics of four-valued non-deterministic matrices (which he called quasi-matrices), in order to characterize a hierarchy of weak modal logics without the necessitation rule. In a previous paper, we extended some systems of Ivlev’s hierarchy, also proposing weaker six-valued systems in which the (T) axiom was replaced by the deontic (D) axiom. In this paper, we propose even weaker systems, by eliminating both axioms, which are characterized by eight-valued non-deterministic matrices. In addition, we prove completeness for those new systems. It is natural to ask if a characterization by finite ordinary (deterministic) logical matrices would be possible for all those Ivlev-like systems. We will show that finite deterministic matrices do not characterize any of them.

Dialogue ◽  
1974 ◽  
Vol 13 (3) ◽  
pp. 505-514 ◽  
Author(s):  
Charles G. Morgan

In an attempt to “purify” logic of existential presuppositions, attention has recently focused on modal logics, where one usually assumes that at least one possible world exists. Systems very analogous to some of the standard modal systems have been developed which drop this presupposition. We will here treat the removal of the existential assumption from Brouwerian modal logic and discuss the relationship of the system so derived to other modal systems.


2018 ◽  
Vol 11 (3) ◽  
pp. 436-469 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
NICK BEZHANISHVILI ◽  
JULIA ILIN

AbstractStable logics are modal logics characterized by a class of frames closed under relation preserving images. These logics admit all filtrations. Since many basic modal systems such as K4 and S4 are not stable, we introduce the more general concept of an M-stable logic, where M is an arbitrary normal modal logic that admits some filtration. Of course, M can be chosen to be K4 or S4. We give several characterizations of M-stable logics. We prove that there are continuum many S4-stable logics and continuum many K4-stable logics between K4 and S4. We axiomatize K4-stable and S4-stable logics by means of stable formulas and discuss the connection between S4-stable logics and stable superintuitionistic logics. We conclude the article with many examples (and nonexamples) of stable, K4-stable, and S4-stable logics and provide their axiomatization in terms of stable rules and formulas.


1983 ◽  
Vol 48 (4) ◽  
pp. 941-964 ◽  
Author(s):  
W.J. Blok ◽  
P. Köhler

A well-known result, going back to the twenties, states that, under some reasonable assumptions, any logic can be characterized as the set of formulas satisfied by a matrix 〈, F〉, where is an algebra of the appropriate type, and F a subset of the domain of , called the set of designated elements. In particular, every quasi-classical modal logic—a set of modal formulas, containing the smallest classical modal logic E, which is closed under the inference rules of substitution and modus ponens—is characterized by such a matrix, where now is a modal algebra, and F is a filter of . If the modal logic is in fact normal, then we can do away with the filter; we can study normal modal logics in the setting of varieties of modal algebras. This point of view was adopted already quite explicitly in McKinsey and Tarski [8]. The observation that the lattice of normal modal logics is dually isomorphic to the lattice of subvarieties of a variety of modal algebras paved the road for an algebraic study of normal modal logics. The algebraic approach made available some general results from Universal Algebra, notably those obtained by Jónsson [6], and thereby was able to contribute new insights in the realm of normal modal logics [2], [3], [4], [10].The requirement that a modal logic be normal is rather a severe one, however, and many of the systems which have been considered in the literature do not meet it. For instance, of the five celebrated modal systems, S1–S5, introduced by Lewis, S4 and S5 are the only normal ones, while only SI fails to be quasi-classical. The purpose of this paper is to generalize the algebraic approach so as to be applicable not just to normal modal logics, but to quasi-classical modal logics in general.


1992 ◽  
Vol 16 (3-4) ◽  
pp. 231-262
Author(s):  
Philippe Balbiani

The beauty of modal logics and their interest lie in their ability to represent such different intensional concepts as knowledge, time, obligation, provability in arithmetic, … according to the properties satisfied by the accessibility relations of their Kripke models (transitivity, reflexivity, symmetry, well-foundedness, …). The purpose of this paper is to study the ability of modal logics to represent the concepts of provability and unprovability in logic programming. The use of modal logic to study the semantics of logic programming with negation is defended with the help of a modal completion formula. This formula is a modal translation of Clack’s formula. It gives soundness and completeness proofs for the negation as failure rule. It offers a formal characterization of unprovability in logic programs. It characterizes as well its stratified semantics.


1938 ◽  
Vol 3 (2) ◽  
pp. 77-82 ◽  
Author(s):  
C. West Churchman

In Oskar Becker's Zur Logik der Modalitäten four systems of modal logic are considered. Two of these are mentioned in Appendix II of Lewis and Langford's Symbolic logic. The first system is based on A1–8 plus the postulate,From A7: ∼◊p⊰∼p we can prove the converse of C11 by writing ∼◊p for p, and hence deriveThe addition of this postulate to A1–8, as Becker points out, allows us to “reduce” all complex modal functions to six, and these six are precisely those which Lewis mentions in his postulates and theorems: p, ∼p, ◊p, ∼◊p, ∼◊∼p, and ◊∼p This reduction is accomplished by showingwhere ◊n means that the modal operator ◊ is repeated n times; e.g., ◊3p = ◊◊◊p. Then it is shown thatBy means of (1), (2), and (3) any complex modal function whatsoever may be reduced to one of the six “simple” modals mentioned above.It might be asked whether this reduction could be carried out still further, i.e., whether two of the six “irreducible” modals could not be equated. But such a reduction would have to be based on the fact that ◊p = p which is inconsistent with the set B1–9 of Lewis and Langford's Symbolic logic and independent of the set A1–8. Hence for neither set would such a reduction be possible.


10.29007/hgbj ◽  
2018 ◽  
Author(s):  
Nick Bezhanishvili

The method of canonical formulas is a powerful tool for investigating intuitionistic and modal logics. In this talk I will discuss an algebraic approach to this method. I will mostly concentrate on the case of intuitionistic logic. But I will also review the case of modal logic and possible generalizations to substructural logic.


Author(s):  
Thomas J. McKay

In reasoning we often use words such as ‘necessarily’, ‘possibly’, ‘can’, ‘could’, ‘must’ and so on. For example, if we know that an argument is valid, then we know that it is necessarily true that if the premises are true, then the conclusion is true. Modal logic starts with such modal words and the inferences involving them. The exploration of these inferences has led to a variety of formal systems, and their interpretation is now most often built on the concept of a possible world. Standard non-modal logic shows us how to understand logical words such as ‘not’, ‘and’ and ‘or’, which are truth-functional. The modal concepts are not truth-functional: knowing that p is true (and what ‘necessarily’ means) does not automatically enable one to determine whether ‘Necessarily p’ is true. (‘It is necessary that all people have been people’ is true, but ‘It is necessary that no English monarch was born in Montana’ is false, even though the simpler constituents – ‘All people have been people’ and ‘No English monarch was born in Montana’– are both true.) The study of modal logic has helped in the understanding of many other contexts for sentences that are not truth-functional, such as ‘ought’ (‘It ought to be the case that p’) and ‘believes’ (‘Alice believes that p’); and also in the consideration of the interaction between quantifiers and non-truth-functional contexts. In fact, much work in modern semantics has benefited from the extension of modal semantics introduced by Richard Montague in beginning the development of a systematic semantics for natural language. The framework of possible worlds developed for modal logic has been fruitful in the analysis of many concepts. For example, by introducing the concept of relative possibility, Kripke showed how to model a variety of modal systems: a proposition is necessarily true at a possible world w if and only if it is true at every world that is possible relative to w. To achieve a better analysis of statements of ability, Mark Brown adapted the framework by modelling actions with sets of possible outcomes. John has the ability to hit the bull’s-eye reliably if there is some action of John’s such that every possible outcome of that action includes John’s hitting the bull’s-eye. Modal logic and its semantics also raise many puzzles. What makes a modal claim true? How do we tell what is possible and what is necessary? Are there any possible things that do not exist (and what could that mean anyway)? Does the use of modal logic involve a commitment to essentialism? How can an individual exist in many different possible worlds?


2019 ◽  
Vol 13 (4) ◽  
pp. 720-747
Author(s):  
SERGEY DROBYSHEVICH ◽  
HEINRICH WANSING

AbstractWe present novel proof systems for various FDE-based modal logics. Among the systems considered are a number of Belnapian modal logics introduced in Odintsov & Wansing (2010) and Odintsov & Wansing (2017), as well as the modal logic KN4 with strong implication introduced in Goble (2006). In particular, we provide a Hilbert-style axiom system for the logic $BK^{\square - } $ and characterize the logic BK as an axiomatic extension of the system $BK^{FS} $. For KN4 we provide both an FDE-style axiom system and a decidable sequent calculus for which a contraction elimination and a cut elimination result are shown.


1957 ◽  
Vol 22 (2) ◽  
pp. 176-186 ◽  
Author(s):  
E. J. Lemmon

The main aims of this paper are firstly to present new and simpler postulate sets for certain well-known systems of modal logic, and secondly, in the light of these results, to suggest some new or newly formulated calculi, capable of interpretation as systems of epistemic or deontic modalities. The symbolism throughout is that of [9] (see especially Part III, Chapter I). In what follows, by a Lewis modal system is meant a system which (i) contains the full classical propositional calculus, (ii) is contained in the Lewis system S5, (iii) admits of the substitutability of tautologous equivalents, (iv) possesses as theses the four formulae:We shall also say that a system Σ1 is stricter than a system Σ2, if both are Lewis modal systems and Σ1 is contained in Σ2 but Σ2 is not contained in Σ1; and we shall call Σ1absolutely strict, if it possesses an infinity of irreducible modalities. Thus, the five systems of Lewis in [5], S1, S2, S3, S4, and S5, are all Lewis modal systems by this definition; they are in an order of decreasing strictness from S1 to S5; and S1 and S2 alone are absolutely strict.


Sign in / Sign up

Export Citation Format

Share Document