scholarly journals Temporal Variations in the Usefulness of Normalized Difference Vegetation Index as a Predictor for Ixodes ricinus (Acari: Ixodidae) in a Borrelia lusitaniae Focus in Tuscany, Central Italy

2008 ◽  
Vol 45 (3) ◽  
pp. 547-555 ◽  
Author(s):  
D. Bisanzio ◽  
G. Amore ◽  
C. Ragagli ◽  
L. Tomassone ◽  
L. Bertolotti ◽  
...  
2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Manuela Signorini ◽  
Anna-Sofie Stensgaard ◽  
Michele Drigo ◽  
Giulia Simonato ◽  
Federica Marcer ◽  
...  

Various ticks exist in the temperate hilly and pre-alpine areas of Northern Italy, where Ixodes ricinus is the more important. In this area different tick-borne pathogen monitoring projects have recently been implemented; we present here the results of a twoyear field survey of ticks and associated pathogens, conducted 2009-2010 in North-eastern Italy. The cost-effectiveness of different sampling strategies, hypothesized a posteriori based on two sub-sets of data, were compared and analysed. The same two subsets were also used to develop models of habitat suitability, using a maximum entropy algorithm based on remotely sensed data. Comparison of the two strategies (in terms of number of ticks collected, rates of pathogen detection and model accuracy) indicated that monitoring at many temporary sites was more cost-effective than monthly samplings at a few permanent sites. The two model predictions were similar and provided a greater understanding of ecological requirements of I. ricinus in the study area. Dense vegetation cover, as measured by the normalized difference vegetation index, was identified as a good predictor of tick presence, whereas high summer temperatures appeared to be a limiting factor. The study suggests that it is possible to obtain realistic results (in terms of pathogens detection and development of habitat suitability maps) with a relatively limited sampling effort and a wellplanned monitoring strategy.


2019 ◽  
Vol 19 (6) ◽  
pp. 1189-1213 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Cesar Azorin-Molina ◽  
Marina Peña-Gallardo ◽  
Miquel Tomas-Burguera ◽  
Fernando Domínguez-Castro ◽  
...  

Abstract. Drought is a major driver of vegetation activity in Spain, with significant impacts on crop yield, forest growth, and the occurrence of forest fires. Nonetheless, the sensitivity of vegetation to drought conditions differs largely amongst vegetation types and climates. We used a high-resolution (1.1 km) spatial dataset of the normalized difference vegetation index (NDVI) for the whole of Spain spanning the period from 1981 to 2015, combined with a dataset of the standardized precipitation evapotranspiration index (SPEI) to assess the sensitivity of vegetation types to drought across Spain. Specifically, this study explores the drought timescales at which vegetation activity shows its highest response to drought severity at different moments of the year. Results demonstrate that – over large areas of Spain – vegetation activity is controlled largely by the interannual variability of drought. More than 90 % of the land areas exhibited statistically significant positive correlations between the NDVI and the SPEI during dry summers (JJA). Nevertheless, there are some considerable spatio-temporal variations, which can be linked to differences in land cover and aridity conditions. In comparison to other climatic regions across Spain, results indicate that vegetation types located in arid regions showed the strongest response to drought. Importantly, this study stresses that the timescale at which drought is assessed is a dominant factor in understanding the different responses of vegetation activity to drought.


2006 ◽  
Vol 43 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Luigi Bertolotti ◽  
Laura Tomassone ◽  
Clara Tramuta ◽  
Elena Grego ◽  
Giuseppina Amore ◽  
...  

Author(s):  
A. Ü. Şorman ◽  
A. D. Mehr ◽  
S. J. Hadi

<p><strong>Abstract.</strong> In this study, the meteorological drought represented by Standardized Precipitation Evapotranspiration Index (SPEI) and agriculture drought represented by Vegetation Condition Index (VCI) are analysed in seven regions over Turkey. VCI calculated using the Normalized Difference Vegetation Index (NDVI) data obtained from NOAA AVHRR, SPEI obtained from the SPEI global database with the version (SPEI base v2.5), and Land use/cover obtained from CORINE datasets. The study covers the period from January 1982 to December 2015 due to the availability of NDVI data. The correlation between monthly and seasonal VCI and SPEI (lag months 1, 3, 6, 9, and 12) was investigated in a regional and provincial scale. Monthly correlation found to be the highest in the Central Anatolia, Aegean, Marmara and Mediterranean regions respectively, while other regions have lower and non-homogenous values. One lag time of the VCI with respect to SPEI 12 improves the correlation. The regional correlation showed that, the highest correlation between two parameters is obtained for all the regions with SPEI 12 during summer, then followed by Autumn, and Spring months, the maximum values are recorded for the Central Anatolia (0.656) and Mediterranean (0.625) in Summer, and Aegean (0.643) in Autumn respectively; rather lower correlation values did occur in Marmara (0.515) in Autumn, Eastern Anatolia (0.501), SE Anatolia (0.375) and Black Sea (0.297) regions in Summer. The provincial investigation between seasonal VCI and SPEI indicated that the presence of a positive correlation in general in most of the provinces in all seasons with several exceptions in the Eastern Anatolia, South eastern Anatolia, Black sea, and Marmara. The land cover types with high correlation coefficients are noticed to be covered by forest, agricultural lands, non-irrigable lands and mostly covered by fruits (grape, olive etc.) using CORINE land cover map.</p>


2018 ◽  
Author(s):  
Zhigang Sun ◽  
Zhu Ouyang ◽  
Xubo Zhang ◽  
Wei Ren

Abstract. Besides cumulative temperature and precipitation, the phase synchronization of temperature and precipitation also helps to regulate vegetation distribution and productivity across global lands. However, the phase synchronization has been rarely considered in previous studies related to climate and biogeography due to a lack of a robust and quantitative approach. In this study, we proposed a synchronization index of temperature and precipitation (SI-TaP) and then investigated its global spatial distribution, interannual fluctuation, and long-term trend derived from a global 60-year dataset of meteorological forcings. Further investigation was conducted to understand the relationship between SI-TaP and the annually summed Normalized Difference Vegetation Index (NDVI), which could be a proxy of terrestrial vegetation productivity. Results show differences in both spatial patterns and temporal variations between SI-TaP and air temperature and precipitation, but SI-TaP may help to explain the distribution and productivity of terrestrial vegetation. About 60 % of regions where annually summed NDVI is greater than half of its maximum value overlap regions where SI-TaP is greater than half of its maximum value. By using SI-TaP to explain vegetation productivity along with temperature and precipitation, the maximum increase in the coefficient of determination is 0.66 across global lands. Results from this study suggest that the proposed SI-TaP index is helpful to better understand climate change and its relation to the biota. Dataset available at http://www.dx.doi.org/10.11922/sciencedb.642 or http://www.sciencedb.cn/dataSet/handle/642.


Ecosistemas ◽  
2020 ◽  
Vol 29 (1) ◽  
Author(s):  
Daryl D. Cruz Flores ◽  
Emerio Alejandro Curbelo Benítez ◽  
Yarelis Ferrer Sánchez ◽  
Dennis Denis Ávila

2007 ◽  
Vol 44 (2) ◽  
pp. 303-307 ◽  
Author(s):  
Giuseppina Amore ◽  
Laura Tomassone ◽  
Elena Grego ◽  
Charlotte Ragagli ◽  
Luigi Bertolotti ◽  
...  

2020 ◽  
Vol 51 (4) ◽  
pp. 768-780
Author(s):  
Lidong Huang ◽  
Aizhong Ye ◽  
Chongjun Tang ◽  
Qingyun Duan ◽  
Yahai Zhang

Abstract Climate change and rural depopulation are changing the ecological and hydrological cycles in China. Data on the normalized difference vegetation index (NDVI), temperature, precipitation, streamflow, sediment and rural population are available for the Gan River basin from 1981 to 2017. We investigated the spatio-temporal variations in climate, human activity and vegetation mainly using the Mann–Kendall test and examined their relationship using the Granger causality test. The results showed that (1) the temperature markedly increased in all seasons; (2) the precipitation increased in summer and winter but decreased in spring and autumn; (3) overall, the NDVI increased markedly during 2005–2017, but showed seasonal differences, with decreases in summer and winter and increases in spring and autumn; (4) the annual sediment transport showed a significant decreasing trend and (5) a large number of the population shifted from rural to urban areas, resulting in a decrease in the rural population between 1998 and 2018. Rural depopulation has brought about farmland abandonment, conversion of farmland to forests, which was the factor driving the recovery of the vegetation and the decrease in sediment. The results of this study can provide support for climate change adaptation and sustainable development.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1041
Author(s):  
Francesco Calzarano ◽  
Giancarlo Pagnani ◽  
Michele Pisante ◽  
Mirella Bellocci ◽  
Giuseppe Cillo ◽  
...  

Esca of grapevine causes yield losses correlated with incidence and severity symptom expression. Factors associated with leaf symptom mechanisms are yet to be fully clarified. Therefore, in 2019 and 2020, macro and microelement analyses and leaf reflectance measurements were carried out on leaves at different growth stages in a vineyard located in Abruzzo, central Italy. Surveys were carried out on leaves of both never leaf-symptomatic vines and different categories of diseased vine shoots. Never leaf-symptomatic and diseased vines were also treated with a fertilizer mixture that proved to be able to limit the symptom expression. Results showed that untreated asymptomatic diseased vines had high calcium contents for most of the vegetative season. On the contrary, treated asymptomatic diseased vines showed higher contents of calcium, magnesium, and sodium, at berries pea-sized, before the onset of symptoms. These vines had better physiological efficiency showing higher water index (WI), normalized difference vegetation index (NDVI), and green normalized difference vegetation index (GNDVI) values, compared to untreated asymptomatic vines, at fruit set. Results confirmed the strong response of the plant to symptom expression development and the possibility of limiting this response with calcium and magnesium applications carried out before the symptom onset.


Sign in / Sign up

Export Citation Format

Share Document