scholarly journals High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy

Microscopy ◽  
2015 ◽  
Vol 64 (6) ◽  
pp. 387-394 ◽  
Author(s):  
Daisuke Koga ◽  
Satoshi Kusumi ◽  
Ryusuke Shodo ◽  
Yukari Dan ◽  
Tatsuo Ushiki
Scanning ◽  
2004 ◽  
Vol 26 (3) ◽  
pp. 122-130 ◽  
Author(s):  
Cedric Gaillard ◽  
Pierre A. Stadelmann ◽  
Christopher J. G. Plummer ◽  
Gilbert Fuchs

Author(s):  
D. Johnson ◽  
P. Moriearty

Since several species of Schistosoma, or blood fluke, parasitize man, these trematodes have been subjected to extensive study. Light microscopy and conventional electron microscopy have yielded much information about the morphology of the various stages; however, scanning electron microscopy has been little utilized for this purpose. As the figures demonstrate, scanning microscopy is particularly helpful in studying at high resolution characteristics of surface structure, which are important in determining host-parasite relationships.


1997 ◽  
Vol 3 (S2) ◽  
pp. 405-406
Author(s):  
F. Cosandey ◽  
L. Zhang ◽  
T. E. Madey

Transition metals supported on oxides have important catalytic properties and are also used in chemical gas sensors for increasing sensitivity and selectivity. In order to understand growth and reactivity in the Au/TiO2 system, we have performed surface studies on a model system consisting of ultrathin, discontinuous Au films on TiO2 (110) single crystals. In this paper we are presenting results obtained by high resolution scanning electron microscopy (HRSEM) on the effects of substrate temperature and average Au thickness on particle size, density and coverage.The TiO2 (110) single crystal surfaces used in this study were prepared in UHV using surface science tools followed by in-situ Au deposition for different substrate temperatures and for various film thicknesses. After deposition, the samples were transferred in air to the Field Emission Scanning Electron microscope (LEO 982 Gemini) for high resolution imaging.Typical high resolution scanning electron microscopy (HRSEM) images of Au films deposited at 300 K are shown in Fig. 1 for two film thicknesses of 0.22 and 1.0 nm.


Chromosoma ◽  
2005 ◽  
Vol 115 (1) ◽  
pp. 50-59 ◽  
Author(s):  
Elizabeth Schroeder-Reiter ◽  
Andreas Houben ◽  
Jürke Grau ◽  
Gerhard Wanner

Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
David Joy ◽  
James Pawley

The scanning electron microscope (SEM) builds up an image by sampling contiguous sub-volumes near the surface of the specimen. A fine electron beam selectively excites each sub-volume and then the intensity of some resulting signal is measured. The spatial resolution of images made using such a process is limited by at least three factors. Two of these determine the size of the interaction volume: the size of the electron probe and the extent to which detectable signal is excited from locations remote from the beam impact point. A third limitation emerges from the fact that the probing beam is composed of a finite number of discrete particles and therefore that the accuracy with which any detectable signal can be measured is limited by Poisson statistics applied to this number (or to the number of events actually detected if this is smaller).


Sign in / Sign up

Export Citation Format

Share Document