Ferric Iron Absorption in Rats: Relationship to Iron Status, Endogenous Sulfhydryl and Other Redox Components in the Intestinal Lumen

1991 ◽  
Vol 121 (6) ◽  
pp. 825-831 ◽  
Author(s):  
Elizabeth M. Wien ◽  
Darrell R. Van Campen
Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 283-290 ◽  
Author(s):  
HA Huebers ◽  
E Huebers ◽  
E Csiba ◽  
W Rummel ◽  
CA Finch

Abstract A mechanism is proposed by which apotransferrin is secreted from mucosal cells, loaded with iron in the intestinal lumen, and then the intact complex is taken into the cell. Within the cell, iron is released and transferred to the blood stream, whereas iron-free transferrin returns to the brush border to be recycled. We have investigated this hypothesis by measuring intestinal absorption of radioiron and 125I-labeled plasma transferrin using tied-off gut segments in normal and iron-deficient rats. There was no absorption of diferric transferrin from the ileum, but high absorption from the duodenum and jejunum segments. Jejunal absorption occurred as a function of the dose offered and showed saturation kinetics. In normal animals, 4 micrograms of the 50 micrograms of transferrin iron was absorbed over 1 hr. In iron-deficient animals, mean values as high as 13 micrograms were observed. Radioiron content of the jejunal mucosa bore a linear relationship to the dose administered and was inversely proportional to the amount of iron entering the plasma. Recycling of transferrin was indicated by the presence of labeled apotransferrin in the lumen, first observed between 15 and 60 min after the injection of diferric transferrin. A high resistance of diferric and apotransferrin to proteolytic degradation within the gut lumen was demonstrated. Comparative studies with lactoferrin and ferritin disclosed poor availability of their iron for absorption. The small amount that was absorbed did not relate to the iron status of the recipient animal. These studies support the role of mucosal transferrin as a shuttle protein for iron absorption.


Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 283-290
Author(s):  
HA Huebers ◽  
E Huebers ◽  
E Csiba ◽  
W Rummel ◽  
CA Finch

A mechanism is proposed by which apotransferrin is secreted from mucosal cells, loaded with iron in the intestinal lumen, and then the intact complex is taken into the cell. Within the cell, iron is released and transferred to the blood stream, whereas iron-free transferrin returns to the brush border to be recycled. We have investigated this hypothesis by measuring intestinal absorption of radioiron and 125I-labeled plasma transferrin using tied-off gut segments in normal and iron-deficient rats. There was no absorption of diferric transferrin from the ileum, but high absorption from the duodenum and jejunum segments. Jejunal absorption occurred as a function of the dose offered and showed saturation kinetics. In normal animals, 4 micrograms of the 50 micrograms of transferrin iron was absorbed over 1 hr. In iron-deficient animals, mean values as high as 13 micrograms were observed. Radioiron content of the jejunal mucosa bore a linear relationship to the dose administered and was inversely proportional to the amount of iron entering the plasma. Recycling of transferrin was indicated by the presence of labeled apotransferrin in the lumen, first observed between 15 and 60 min after the injection of diferric transferrin. A high resistance of diferric and apotransferrin to proteolytic degradation within the gut lumen was demonstrated. Comparative studies with lactoferrin and ferritin disclosed poor availability of their iron for absorption. The small amount that was absorbed did not relate to the iron status of the recipient animal. These studies support the role of mucosal transferrin as a shuttle protein for iron absorption.


2012 ◽  
Vol 302 (12) ◽  
pp. L1280-L1286 ◽  
Author(s):  
V. M. Ruvin Kumara ◽  
Marianne Wessling-Resnick

The absorption of metals from the nasal cavity to the blood and the brain initiates an important route of occupational exposures leading to health risks. Divalent metal transporter-1 (DMT1) plays a significant role in the absorption of intranasally instilled manganese, but whether iron uptake would be mediated by the same pathway is unknown. In iron-deficient rats, blood 59Fe levels after intranasal administration of the radioisotope in the ferrous form were significantly higher than those observed for iron-sufficient control rats. Similar results were obtained when ferric iron was instilled intranasally, and blood levels of 59Fe were even greater in the iron-deficient rats compared with the amount of ferrous iron absorbed. Experiments with Belgrade ( b/b) rats showed that DMT1 deficiency limited ferric iron uptake from the nasal cavity to the blood compared with +/b controls matched for iron deficiency. These results indicate that olfactory uptake of ferric iron by iron-deficient rats involves DMT1. Western blot experiments confirmed that DMT1 levels are significantly higher in iron-deficient rats compared with iron-sufficient controls in olfactory tissue. Thus the molecular mechanism of olfactory iron absorption is regulated by body iron status and involves DMT1.


2018 ◽  
Vol 108 (6) ◽  
pp. 1324-1333 ◽  
Author(s):  
Diego Moretti ◽  
Samuel Mettler ◽  
Christophe Zeder ◽  
Carsten Lundby ◽  
Anneke Geurts-Moetspot ◽  
...  

ABSTRACT Background Iron status is a determinant of physical performance, but training may induce both low-grade inflammation and erythropoiesis, exerting opposing influences on hepcidin and iron metabolism. To our knowledge, the combined effects on iron absorption and utilization during training have not been examined directly in humans. Objective We hypothesized that 3 wk of exercise training in recreational male runners would decrease oral iron bioavailability by increasing inflammation and hepcidin concentrations. Design In a prospective intervention, nonanemic, iron-sufficient men (n = 10) completed a 34-d study consisting of a 16-d control phase and a 22-d exercise-training phase of 8 km running every second day. We measured oral iron absorption and erythroid iron utilization using oral 57Fe and intravenous 58Fe tracers administered before and during training. We measured hemoglobin mass (mHb) and total red blood cell volume (RCV) by carbon monoxide rebreathing. Iron status, interleukin-6 (IL-6), plasma hepcidin (PHep), erythropoietin (EPO), and erythroferrone were measured before, during, and after training. Results Exercise training induced inflammation, as indicated by an increased mean ± SD IL-6 (0.87 ± 1.1 to 5.17 ± 2.2 pg/mL; P < 0.01), while also enhancing erythropoiesis, as indicated by an increase in mean EPO (0.66 ± 0.42 to 2.06 ± 1.6 IU/L), mHb (10.5 ± 1.6 to 10.8 ± 1.8 g/kg body weight), and mean RCV (30.7 ± 4.3 to 32.7 ± 4.6 mL/kg) (all P < 0.05). Training tended to increase geometric mean iron absorption by 24% (P = 0.083), consistent with a decreased mean ± SD PHep (7.25 ± 2.14 to 5.17 ± 2.24 nM; P < 0.05). The increase in mHb and erythroid iron utilization were associated with the decrease in PHep (P < 0.05). Compartmental modeling indicated that iron for the increase in mHb was obtained predominantly (>80%) from stores mobilization rather than from increased dietary absorption. Conclusions In iron-sufficient men, mild intensification of exercise intensity increases both inflammation and erythropoiesis. The net effect is to decrease hepcidin concentrations and to tend to increase oral iron absorption. This trial was registered at clinicaltrials.gov as NCT01730521.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1949 ◽  
Author(s):  
Ann-Sofie Sandberg ◽  
Gunilla Önning ◽  
Niklas Engström ◽  
Nathalie Scheers

Several human interventions have indicated that Lactobacillus plantarum 299v (L. plantarum 299v) increases intestinal iron absorption. The aim of the present study was to investigate possible effects of L. plantarum 299v on the mechanisms of iron absorption on the cellular level. We have previously shown that lactic fermentation of vegetables increased iron absorption in humans. It was revealed that the level of ferric iron [Fe (H2O)5]2+ was increased after fermentation. Therefore, we used voltammetry to measure the oxidation state of iron in simulated gastrointestinal digested oat and mango drinks and capsule meals containing L. plantarum 299v. We also exposed human intestinal co-cultures of enterocytes and goblet cells (Caco-2/HT29 MTX) to the supplements in order to study the effect on proteins possibly involved (MUC5AC, DCYTB, DMT1, and ferritin). We detected an increase in ferric iron in the digested meals and drinks containing L. plantarum 299v. In the intestinal cell model, we observed that the ferric reductase DCYTB increased in the presence of L. plantarum 299v, while the production of mucin (MUC5AC) decreased independently of L. plantarum 299v. In conclusion, the data suggest that the effect of L. plantarum 299v on iron metabolism is mediated through driving the Fe3+/DCYTB axis.


2004 ◽  
Vol 74 (6) ◽  
pp. 435-443 ◽  
Author(s):  
Hertrampf ◽  
Olivares

Iron amino acid chelates, such as iron glycinate chelates, have been developed to be used as food fortificants and therapeutic agents in the prevention and treatment of iron deficiency anemia. Ferrous bis-glycine chelate (FeBC), ferric tris-glycine chelate, ferric glycinate, and ferrous bis-glycinate hydrochloride are available commercially. FeBC is the most studied and used form. Iron absorption from FeBC is affected by enhancers and inhibitors of iron absorption, but to a lesser extent than ferrous sulfate. Its absorption is regulated by iron stores. FeBC is better absorbed from milk, wheat, whole maize flour, and precooked corn flour than is ferrous sulfate. Supplementation trials have demonstrated that FeBC is efficacious in treating iron deficiency anemia. Consumption of FeBC-fortified liquid milk, dairy products, wheat rolls, and multi-nutrient beverages is associated with an improvement of iron status. The main limitations to the widespread use of FeBC in national fortification programs are the cost and the potential for promoting organoleptic changes in some food matrices. Additional research is required to establish the bioavailability of FeBC in different food matrices. Other amino acid chelates should also be evaluated. Finally there is an urgent need for more rigorous efficacy trials designed to define the relative merits of amino acid chelates when compared with bioavailable iron salts such as ferrous sulfate and ferrous fumarate and to determine appropriate fortification levels


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1885 ◽  
Author(s):  
Palsa Kondaiah ◽  
Puneeta Singh Yaduvanshi ◽  
Paul A Sharp ◽  
Raghu Pullakhandam

Iron and zinc are essential micronutrients required for growth and health. Deficiencies of these nutrients are highly prevalent among populations, but can be alleviated by supplementation and food fortification. Cross-sectional studies in humans showed positive association of serum zinc levels with hemoglobin and markers of iron status. Dietary restriction of zinc or intestinal specific conditional knock out of ZIP4 (SLC39A4), an intestinal zinc transporter, in experimental animals demonstrated iron deficiency anemia and tissue iron accumulation. Similarly, increased iron accumulation has been observed in cultured cells exposed to zinc deficient media. These results together suggest a potential role of zinc in modulating intestinal iron absorption and mobilization from tissues. Studies in intestinal cell culture models demonstrate that zinc induces iron uptake and transcellular transport via induction of divalent metal iron transporter-1 (DMT1) and ferroportin (FPN1) expression, respectively. It is interesting to note that intestinal cells are exposed to very high levels of zinc through pancreatic secretions, which is a major route of zinc excretion from the body. Therefore, zinc appears to be modulating the iron metabolism possibly via regulating the DMT1 and FPN1 levels. Herein we critically reviewed the available evidence to hypothesize novel mechanism of Zinc-DMT1/FPN1 axis in regulating intestinal iron absorption and tissue iron accumulation to facilitate future research aimed at understanding the yet elusive mechanisms of iron and zinc interactions.


2020 ◽  
Vol 112 (3) ◽  
pp. 576-585
Author(s):  
Katherine M Delaney ◽  
Ronnie Guillet ◽  
Eva K Pressman ◽  
Laura E Caulfield ◽  
Nelly Zavaleta ◽  
...  

ABSTRACT Background Maternal iron absorption during pregnancy can be evaluated using RBC incorporation of orally administered stable iron isotope. This approach underestimates true maternal absorption of iron as it does not account for absorbed iron that is transferred to the fetus or retained within the placenta. Objective Our objective was to re-evaluate maternal iron absorption after factoring in these losses and identify factors associated with iron partitioning between the maternal, neonatal, and placental compartments. Methods This study utilized data from stable iron isotope studies carried out in 68 women during the third trimester of pregnancy. Iron status indicators and stable iron isotopic enrichment were measured in maternal blood, umbilical cord blood, and placental tissue when available. Factors associated with iron isotope partitioning between the maternal, neonatal, and placental compartments were identified. Results On average, true maternal absorption of iron increased by 10% (from 19% to 21%) after accounting for absorbed iron present in the newborn (P &lt; 0.001), and further increased by 7%, (from 39% to 42%, P &lt; 0.001) after accounting for iron retained within the placenta. On average, 2% of recovered tracer was present in the placenta and 6% was found in the newborn. Net transfer of iron to the neonate was higher in women with lower total body iron (standardized β = −0.48, P &lt; 0.01) and lower maternal hepcidin (standardized β = −0.66, P &lt; 0.01). In women carrying multiple fetuses, neonatal hepcidin explained a significant amount of observed variance in net placental transfer of absorbed iron (R = 0.95, P = 0.03). Conclusions Maternal RBC iron incorporation of an orally ingested tracer underestimated true maternal iron absorption. The degree of underestimation was greatest in women with low body iron. Maternal hepcidin was inversely associated with maternal RBC iron utilization, whereas neonatal hepcidin explained variance in net transfer of iron to the neonatal compartment. These trials were registered at clinicaltrials.gov as NCT01019096 and NCT01582802.


Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 2187-2193 ◽  
Author(s):  
SR Lynch ◽  
BS Skikne ◽  
JD Cook

Abstract The relationship between iron status and food iron absorption was evaluated in 75 normal volunteers, 15 patients with idiopathic hemochromatosis, and 22 heterozygotes by using double extrinsic radioiron tags to label independently the nonheme and heme iron components of a hamburger meal. In normal subjects, absorption from each of these pools was inversely correlated with storage iron, as measured by the serum ferritin concentration. In patients with hemochromatosis, absorption of both forms of iron was far greater than would be predicted from the relationship between absorption and serum ferritin observed in normal volunteers. Nevertheless, there was still a modest but statistically significant reduction in absorption of nonheme iron with increasing serum ferritin. This relationship could not be demonstrated in the case of heme iron absorption. In heterozygotes, nonheme iron absorption from a hamburger meal containing no supplementary iron did not differ significantly from that observed in normal volunteers. However, when this meal was both modified to promote bioavailability and supplemented with iron, absorption of nonheme iron was significantly elevated. These studies confirm the presence of excessive nonheme iron absorption even from unfortified meals in patients with idiopathic hemochromatosis and suggest in addition that they are particularly susceptible to iron loading from diets containing a high proportion of heme iron. Impaired regulation of nonheme iron absorption was also observed in heterozygous individuals, but a statistically significant abnormality was demonstrable only when the test meal contained a large highly bioavailable iron supplement.


Sign in / Sign up

Export Citation Format

Share Document