Retinoic Acid Receptor-α Gene Expression Is Modulated by Dietary Vitamin A and by Retinoic Acid in Chicken T Lymphocytes

1994 ◽  
Vol 124 (11) ◽  
pp. 2139-2146 ◽  
Author(s):  
Orna Halevy ◽  
Yossef Arazi ◽  
Doron Melamed ◽  
Aharon Friedman ◽  
David Sklan
1992 ◽  
Vol 286 (3) ◽  
pp. 755-760 ◽  
Author(s):  
S Kato ◽  
H Mano ◽  
T Kumazawa ◽  
Y Yoshizawa ◽  
R Kojima ◽  
...  

We have investigated the effects of retinoids, vitamin D and thyroid hormone on the levels of retinoic acid receptor (RAR)alpha, RAR beta and RAR gamma mRNAs in intact animals. Although vitamin A deficiency caused no significant changes in the levels of RAR alpha and RAR gamma mRNAs, the level of RAR beta transcripts was greatly decreased in various tissues of vitamin A-deficient rats, but was restored rapidly to a normal level after administration of retinoic acid. Retinol also restored the RAR beta mRNA level, but the magnitude and kinetics of the induction differed from those by retinoic acid. The use of specific inhibitors demonstrated that this autoregulation of RAR beta gene expression in vivo occurred at the transcriptional level. In addition, from these results it was postulated that the maintenance of the normal RAR beta mRNA levels seemed to require a threshold serum retinol concentration (about 25 micrograms/dl). Moreover, we found that administration of retinol and retinoic acid to normal rats caused the overexpression of RAR beta transcripts (2-15-fold) when compared with the control levels of RAR beta mRNA, although the levels of RAR alpha and RAR gamma mRNAs were not affected. Vitamin D and thyroid hormone did not modulate the levels of RAR transcripts. These findings clearly indicate the specific ligand regulation of RAR beta gene expression in intact animals. The altered levels of RAR beta according to retinoid status may affect retinoid-inducible gene expression.


1993 ◽  
Vol 152 (1) ◽  
pp. 240-248 ◽  
Author(s):  
Aharon Friedman ◽  
Orna Halevy ◽  
Michal Schrift ◽  
Yossef Arazi ◽  
David Sklan

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1601-1601
Author(s):  
Guo-Qiang Chen ◽  
Zhi-Min Gu ◽  
Mei-Yi Zhou ◽  
Ying-Li Wu ◽  
Ying Huang

Abstract Retinoids, a generic term that covers compounds including both naturally dietary vitamin A (retinol) metabolites and active synthetic analogs, exert their pleiotropic effects such as anticancer activity through the three retinoic acid receptors (RARs) subtypes [RARα, RARβ and RARγ]. The most impressive example of retinoid anticancer activity is the successful application of all-trans retinoic acid (ATRA) in the treatment of patients with acute promyelocytic leukemia (APL), a unique subtype of acute myelogenous leukemia (AML) which characterized with the specific reciprocal chromosome translocation t(15;17) that results in the expression of leukemia-promoting promyelocytic leukemia-retinoic acid receptor-α (PML-RARα) chimeric protein. However, retinoid resistance frequently occurred in ATRA-treated patients. Isodon xerophilus, a perennial shrub native to Southern China, has been used as an anti-tumor, anti-inflammatory, and anti-microbial agent in Chinese herb medicine for a long history. During the past 30 years, a large number of ent-kauranoids have been isolated from the genus Isodon, many of which exhibit potent antitumor activities with a relatively low toxicity. In this work, we identified a novel ent-kaurene diterpenoid named pharicin B to rapidly stabilize RARα as well as PML-RARα protein in AML cell lines. More intriguingly, it also antagonizes ATRA-induced degradation of RARα and PML-RARα proteins. The interesting finding promotes us to investigate its possible effects on AML cells. Our results demonstrated that pharicin B at nontoxic concentration suppresses growth in APL cell line NB4 and myeloblactic leukemic U937 and THP-1 cell lines. Together with exceedingly low concentration of ATRA and RARα specific agonist AM580 existed, pharicin B significantly triggered all the three cell lines and some NB4-derived ATRA-resistant cell lines such as NB4-MR2 and NB4-LR1 (but not NB4-LR2) to undergo myeloid maturation, as evidenced by morphology, CD11/CD14 expression and NBT reduction test. All these results proposed that pharicin B would be a good tool for investigating mechanisms of RARα stabilization and degradation induced by ATRA as well as retinoid resistance, and its combination with ATRA might present the clinical potentials for differentiation-inducing therapy of APL and other AML patients.


Endocrinology ◽  
1998 ◽  
Vol 139 (3) ◽  
pp. 1239-1248 ◽  
Author(s):  
Karin M. Akmal ◽  
Jannette M. Dufour ◽  
Mynuong Vo ◽  
Sarah Higginson ◽  
Kwan Hee Kim

1996 ◽  
Vol 222 (2) ◽  
pp. 395-400 ◽  
Author(s):  
Ken-ichi Takeyama ◽  
Ryotaro Kojima ◽  
Takuya Ohashi ◽  
Takashi Sato ◽  
Hiroshi Mano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document