7, 12-Dimethylbenz[a]anthracene Adduct Formation With Syrian Hamster Cheek Pouch Epithelial DNA: In Vitro Studies in Organ Explant Culture

1988 ◽  
Vol 80 (6) ◽  
pp. 407-414
Author(s):  
A. G. Lurie ◽  
J. E. Coghill ◽  
D. L. Rozenski
1998 ◽  
Vol 79 (1) ◽  
pp. 54-58 ◽  
Author(s):  
F Ghezzo ◽  
G N Berta ◽  
B Bussolati ◽  
A Bosio ◽  
G Corvetti ◽  
...  

1995 ◽  
Vol 269 (6) ◽  
pp. H2031-H2038 ◽  
Author(s):  
J. Xia ◽  
T. L. Little ◽  
B. R. Duling

We have previously shown that conducted vasomotor responses follow patterns that are consistent with a passive spread of electrical current along the length of the arterioles [(Xia and Duling, Am. J. Physiol. 269 (Heart Circ. Physiol. 38): H2022-H2030, 1995]. In this study, we define the cells through which the current flows. Isolated arterioles of hamster cheek pouch were used. The mean resting membrane potential (RMP) for randomly sampled arteriolar cells was -67 mV. When cell types were identified by dye injection, the RMPs were -68 and -67 mV for smooth muscle (SM) and endothelium (EC), respectively. Pulses of KCl induced transient, monophasic depolarizations at the site of stimulation (local), which were conducted decrementally along the length of the arteriole over several millimeters. During electrical conduction, three patterns of responses could be observed, but identical patterns of the conducted electrical responses were always observed in SM and EC. Phenylephrine stimulation also caused transient local and conducted depolarizations in both SM and EC. As with KCl stimuli, shapes of conducted electrical responses were identical in records made in both cell types. The results suggest that SM and EC are electrically coupled both homocellularly and heterocellularly.


2002 ◽  
Vol 93 (4) ◽  
pp. 1377-1383 ◽  
Author(s):  
Takaya Tsueshita ◽  
Salil Gandhi ◽  
Hayat Önyüksel ◽  
Israel Rubinstein

The purpose of this study was to elucidate the interactions between pituitary adenylate cyclase-activating peptide (PACAP)-(1—38) and phospholipids in vitro and to determine whether these phenomena modulate, in part, the vasorelaxant effects of the peptide in the intact peripheral microcirculation. We found that the critical micellar concentration of PACAP-(1—38) was 0.4–0.9 μM. PACAP-(1—38) significantly increased the surface tension of a dipalmitoylphosphatidylcholine monolayer and underwent conformational transition from predominantly random coil in saline to α-helix in the presence of distearoyl-phosphatidylethanolamine-polyethylene glycol (molecular mass of 2,000 Da) sterically stabilized phospholipid micelles (SSM) ( P < 0.05). Using intravital microscopy, we found that aqueous PACAP-(1—38) evoked significant concentration-dependent vasodilation in the intact hamster cheek pouch that was significantly potentiated when PACAP-(1—38) was associated with SSM ( P < 0.05). The vasorelaxant effects of aqueous PACAP-(1—38) were mediated predominantly by PACAP type 1 (PAC1) receptors, whereas those of PACAP-(1—38) in SSM predominantly by PACAP/vasoactive intestinal peptide type 1 and 2 (VPAC1/VPAC2) receptors. Collectively, these data indicate that PACAP-(1—38) self-associates and interacts avidly with phospholipids in vitro and that these phenomena amplify peptide vasoactivity in the intact peripheral microcirculation.


1991 ◽  
Vol 260 (2) ◽  
pp. H355-H361 ◽  
Author(s):  
M. R. Hynes ◽  
B. R. Duling

When isolated from the hamster cheek pouch, cannulated, and perfused, 60- to 90-microns arterioles spontaneously contracted to 67 +/- 4% of maximum diameter. Vessel sensitivity to variations in extracellular Ca2+ was then evaluated. Tone, regardless of its source, was highly dependent on the concentration of Ca2+ in the bathing solution. The magnitude of responses to changing Ca2+ depended upon which vessel surface (luminal or abluminal) the change was made. For K(+)-induced tone the Ca2+ concentration-response curve was right shifted 60-fold for luminal vs. abluminal changes. These results suggest that restricted diffusion of Ca2+ from lumen to smooth muscle dramatically reduces smooth muscle Ca2+ concentration and that under standard in vitro conditions the smooth muscle layer is effectively isolated from luminal contents. Both the cytosolic and stored Ca2+ in these microvessels were dependent on the Ca2+ concentration in the bathing solution. Abrupt removal of Ca2+ from bath produced a rapid maximal dilation with a mean time to half-maximal response (t1/2 max) of 14 +/- 4 s. Ca2+ replacement induced a return to the previous level of tone with a mean t1/2 max of 8 +/- 3 s. The magnitude of transient responses to caffeine (10 mM) was inversely related to the time of exposure to zero Ca2+ with a rapid decay in magnitude (t1/2 max = 2.7 +/- 0.8 min). These data suggest that the smooth muscle cells of arterioles have a particularly rapid transmembrane Ca2+ flux that is tightly controlled by an intracellular regulatory mechanism, which may explain the generally increased dependence of smaller vessels on extracellular Ca2+.


1998 ◽  
Vol 275 (1) ◽  
pp. R56-R62 ◽  
Author(s):  
Hiroyuki Ikezaki ◽  
Sudhir Paul ◽  
Hayat Alkan-Önyüksel ◽  
Manisha Patel ◽  
Xiao-Pei Gao ◽  
...  

The purpose of this study was to determine whether a monoclonal anti-vasoactive intestinal peptide (VIP) antibody, which binds VIP with high affinity and specificity and catalyzes cleavage of the peptide in vitro, attenuates VIP vasorelaxation in vivo and, if so, whether insertion of VIP on the surface of sterically stabilized liposomes (SSL), which protects the peptide from trypsin- and plasma-catalyzed cleavage in vitro, curtails this response. Using intravital microscopy, we found that suffusion of monoclonal anti-VIP antibody (clone c23.5, IgG2ak), but not of nonimmune antibody (myeloma cell line UPC10, IgG2ak) or empty SSL, significantly attenuates VIP-induced vasodilation in the in situ hamster cheek pouch ( P < 0.05). By contrast, anti-VIP antibody has no significant effects on vasodilation elicited by isoproterenol, nitroglycerin, and calcium ionophore A-23187, agonists that activate intracellular effector systems in blood vessels that mediate, in part, VIP vasoreactivity. Suffusion of VIP on SSL, but not of empty SSL, restores the vasorelaxant effects of VIP in the presence of anti-VIP antibody. Collectively, these data suggest that VIP catalysis by high affinity and specific VIP autoantibodies displaying protease-like activity constitutes a novel mechanism whereby VIP vasoreactivity is regulated in vivo.


1996 ◽  
Vol 270 (6) ◽  
pp. H2216-H2227 ◽  
Author(s):  
J. M. Beach ◽  
E. D. McGahren ◽  
J. Xia ◽  
B. R. Duling

A fluorescence ratio technique based on the voltage-sensitive dye 1-(3-sulfonatopropyl)-8-[beta-[2-di-n-butylamino)-6-naphythyl++ +]vinyl] pyridinium betaine (di-8-ANEPPS)has been developed for recording membrane potential changes during vascular responses of arterioles. Perfusion of hamster cheek pouch arterioles with the dye labeled the endothelial cell layer. voltage responses from the endothelium of intact arterioles were determined by analysis of voltage-induced shifts in fluorescence emission wavelengths from dye spectra imaged from the vessel wall. Membrane depolarization caused the dye spectrum to shift toward blue wavelengths, with maximal fluorescence changes near 560 and 620 nm. In isolated nonperfused arterioles, comparison of continuous dual-wavelength recordings with simultaneous microelectrode recordings showed that the ratio of fluorescence intensities (fluorescence at 620 nm to fluorescence at 560 nm) accurately followed changes in membrane potential (6–21 mV) during vasoconstriction. The dye response was linear with respect to potential changes from -56 to -6 mV, with a voltage sensitivity of 9.7% change in the ratio per 100 mV. Membrane potential responses from in vitro and in vivo arterioles after potassium stimulation consisted of rapid ( < 0.5 -s) depolarization followed by slow repolarization over several seconds. Potassium-induced depolarizations were conducted along arterioles, and the values of the electrical length constant for conducted depolarization determined by optical and microelectrode methods were in agreement. We conclude that ratio analysis of di-8-ANEPPS fluorescence emission can be used to accurately record membrane potential changes on the time scale of seconds during vasomotor activity from arterioles.


1975 ◽  
Vol 54 (3) ◽  
pp. 522-526
Author(s):  
Henry M. Cherrick ◽  
Bruce D. McKelvy

Toxicological studies on the peripheral blood after topical application of 5-fluorouracil to the buccal pouch of the Syrian hamster showed that a daily application of 10 μl (0.5 mg) was the maximum ideal dose for this animal. This dose did not depress to a significant degree the white blood cell count, red blood cell count, hemoglobin level, hematocrit value, or the peripheral differential blood counts after 14 daily applications. Doses of increased concentration either daily or periodically were less effective and toxic.


Sign in / Sign up

Export Citation Format

Share Document