scholarly journals Intracranial Myxoid Mesenchymal Tumor With EWSR1-ATF1 Fusion

2020 ◽  
Vol 79 (3) ◽  
pp. 347-351 ◽  
Author(s):  
Leomar Y Ballester ◽  
Jeanne M Meis ◽  
Alexander J Lazar ◽  
Sujit S Prabhu ◽  
Kimberly B Hoang ◽  
...  

Abstract Angiomatoid fibrous histiocytoma (AFH) is a rare soft tissue tumor that arises primarily in the extremities of young adults. Recurrent gene fusions involving EWSR1 with members of the cAMP response element binding protein (CREB) family have been reported in a diverse group of tumors, including AFH. AFH-like lesions have been reported to occur intracranially and the reported cases show low proliferation indices, frequently have a connection with the dura, and show recurrent EWSR1 rearrangements. These tumors have been termed intracranial myxoid mesenchymal tumor with EWSR1-CREB family gene fusions. A literature search identified 11 reported cases of intracranial AFH-like lesions with an EWSR1 rearrangement. Here, we report a case of intracranial myxoid mesenchymal tumor with an EWSR1-ATF1 fusion in an adult patient, and review the existing literature on this recently described entity.

Neurosurgery ◽  
2020 ◽  
Vol 88 (1) ◽  
pp. E114-E122
Author(s):  
Ricardo A Domingo ◽  
Tito Vivas-Buitrago ◽  
Mark Jentoft ◽  
Alfredo Quinones-Hinojosa

ABSTRACT BACKGROUND AND IMPORTANCE In the setting of intracranial neoplasms, EWSR1-cAMP Response Element-Binding Protein (CREB) transcription factor family fusions have been described in myxoid mesenchymal tumors, extremely rare entities with a close histopathologic and immunologic resemblance to myxoid subtype angiomatoid fibrous histiocytomas (AFH). Controversy exists on whether these central nervous system lesions are a subtype of myxoid AFH or a completely separate entity, which entitles a distinct clinical behavior and, consequently, a different approach to management. Upon review of the literature, only 14 cases of intracranial tumors harboring an EWSR1-CREB family fusion were identified, with only 3 cases presenting in middle-aged adults, none of which reported an EWSR1-CREM fusion mutation. Significant variability in reported radiographic and histopathological characteristics, as well as in clinical outcomes, was noted. Their similarity with other soft tissue tumors, added to the scarce information on its clinical behavior, represents a great diagnostic and therapeutic challenge to the treating physician. CLINICAL PRESENTATION We present a rare case of EWSR1-CREM mutated intracranial myxoid mesenchymal tumor/myxoid subtype AFH presenting as persistent headaches in a 36-yr-old woman with radiographic evidence of rapid growth and extensive vasogenic edema, for which she underwent surgical resection. CONCLUSION This represents a unique case of EWSR1-CREM mutated intracranial myxoid mesenchymal tumor presenting in adulthood, with evidence of aggressive behavior.


2019 ◽  
Vol 17 (3) ◽  
pp. 249-253
Author(s):  
Liu Chenglong ◽  
Liu Haihua ◽  
Zhang Fei ◽  
Zheng Jie ◽  
Wei Fang

Cancer-induced bone pain is a severe and complex pain caused by metastases to bone in cancer patients. The aim of this study was to investigate the analgesic effect of scutellarin on cancer-induced bone pain in rat models by intrathecal injection of Walker 256 carcinoma cells. Mechanical allodynia was determined by paw withdrawal threshold in response to mechanical stimulus, and thermal hyperalgesia was indicated by paw withdrawal latency in response to noxious thermal stimulus. The paw withdrawal threshold and paw withdrawal latencies were significantly decreased after inoculation of tumor cells, whereas administration of scutellarin significantly attenuated tumor cell inoculation-induced mechanical and heat hyperalgesia. Tumor cell inoculation-induced tumor growth was also significantly abrogated by scutellarin. Ca2+/calmodulin-dependent protein kinase II is a multifunctional kinase with up-regulated activity in bone pain models. The activation of Ca2+/calmodulin-dependent protein kinase II triggers phosphorylation of cAMP-response element binding protein. Scutellarin significantly reduced the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein in cancer-induced bone pain rats. Collectively, our study demonstrated that scutellarin attenuated tumor cell inoculation-induced bone pain by down-regulating the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein. The suppressive effect of scutellarin on phosphorylated-Ca2+/calmodulin-dependent protein kinase II/phosphorylated-cAMP-response element binding protein activation may serve as a novel therapeutic strategy for CIBP management.


Circulation ◽  
1995 ◽  
Vol 92 (8) ◽  
pp. 2041-2043 ◽  
Author(s):  
Frank Ulrich Müller ◽  
Peter Bokník ◽  
Andreas Horst ◽  
Jörg Knapp ◽  
Bettina Linck ◽  
...  

2003 ◽  
Vol 369 (3) ◽  
pp. 477-484 ◽  
Author(s):  
Antonio De LUCA ◽  
Anna SEVERINO ◽  
Paola De PAOLIS ◽  
Giuliano COTTONE ◽  
Luca De LUCA ◽  
...  

Thyroid hormone receptors (TRs) and members of the myocyte enhancer factor 2 (MEF2) family are involved in the regulation of muscle-specific gene expression during myogenesis. Physical interaction between these two factors is required to synergistically activate gene transcription. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) interacting with transcription factors is able to increase their activity on target gene promoters. We investigated the role of p300 in regulating the TR—MEF2A complex. To this end, we mapped the regions of these proteins involved in physical interactions and we evaluated the expression of a chloramphenicol acetyltransferase (CAT) reporter gene in U2OS cells under control of the α-myosin heavy chain promoter containing the thyroid hormone response element (TRE). Our results suggested a role of p300/CBP in mediating the transactivation effects of the TR—retenoid X receptor (RxR)—MEF2A complex. Our findings showed that the same C-terminal portion of p300 binds the N-terminal domains of both TR and MEF2A, and our in vivo studies demonstrated that TR, MEF2A and p300 form a ternary complex. Moreover, by the use of CAT assays, we demonstrated that adenovirus E1A inhibits activation of transcription by TR—RxR—MEF2A—p300 but not by TR—RxR—MEF2A. Our data suggested that p300 can bind and modulate the activity of TR—RxR—MEF2A at TRE. In addition, it is speculated that p300 might modulate the activity of the TR—RxR—MEF2A complex by recruiting a hypothetical endogenous inhibitor which may act like adenovirus E1A.


Sign in / Sign up

Export Citation Format

Share Document