scholarly journals Regression rate response in spin-stabilized solid fuel ramjets

2020 ◽  
Vol 37 ◽  
pp. 37-43
Author(s):  
Amir Mahdi Tahsini

ABSTRACT The regression rate of the solid fuel in the spinning solid fuel ramjet is investigated here using numerical simulations. The finite volume solver of the reacting turbulent flow is developed to study the flow field in the back-step combustion chamber where the burning rate of the solid fuel is computed using the conjugate heat transfer. The dependence of the burning rate on the circumferential velocity of the ramjet is studied, and it is shown that the spin augments the burning rate due to the enhancement of the convective heat flux along the fuel grain. So, the spin can be used to improve the performance of the solid fuel ramjets. In addition, the effect of rapid change in spin velocity on the regression rate of the fuel is investigated, which shows the transient-burning behavior. The results show that although the spin may increase the burning rate by ∼10% in steady-state operation of the ramjet, the spin acceleration may cause the overshoot in burning rate with the peak value >30% in the unsteady operation.

Aerospace ◽  
2019 ◽  
Vol 6 (12) ◽  
pp. 127 ◽  
Author(s):  
Paravan

This work provides a lab-scale investigation of the ballistics of solid fuel formulations based on hydroxyl-terminated polybutadiene and loaded with Al-based energetic additives. Tested metal-based fillers span from micron- to nano-sized powders and include oxidizer-containing fuel-rich composites. The latter are obtained by chemical and mechanical processes providing reduced diffusion distance between Al and the oxidizing species source. A thorough pre-burning characterization of the additives is performed. The combustion behaviors of the tested formulations are analyzed considering the solid fuel regression rate and the mass burning rate as the main parameters of interest. A non-metallized formulation is taken as baseline for the relative grading of the tested fuels. Instantaneous and time-average regression rate data are determined by an optical time-resolved technique. The ballistic responses of the fuels are analyzed together with high-speed visualizations of the regressing surface. The fuel formulation loaded with 10 wt.% nano-sized aluminum (ALEX-100) shows a mass burning rate enhancement over the baseline of 55% ± 11% for an oxygen mass flux of 325 ± 20 kg/(m2∙s), but this performance increase nearly disappears as combustion proceeds. Captured high-speed images of the regressing surface show the critical issue of aggregation affecting the ALEX-100-loaded formulation and hindering the metal combustion. The oxidizer-containing composite additives promote metal ignition and (partial) burning in the oxidizer-lean region of the reacting boundary layer. Fuels loaded with 10 wt.% fluoropolymer-coated nano-Al show mass burning rate enhancement over the baseline >40% for oxygen mass flux in the range 325 to 155 kg/(m2∙s). The regression rate data of the fuel composition loaded with nano-sized Al-ammonium perchlorate composite show similar results. In these formulations, the oxidizer content in the fuel grain is <2 wt.%, but it plays a key role in performance enhancement thanks to the reduced metal–oxidizer diffusion distance. Formulations loaded with mechanically activated ALEX-100–polytetrafluoroethylene composites show mass burning rate increases up to 140% ± 20% with metal mass fractions of 30%. This performance is achieved with the fluoropolymer mass fraction in the additive of 45%.


Author(s):  
Amir Mahdi Tahsini

The influence of the inlet swirling flow on the regression rate of the fuel in the combustion chamber of the solid fuel ramjet is investigated in this study using numerical simulations. The finite-volume solver of the compressible turbulent reacting flow is developed to study the flow field where the burning rate is computed using the conjugate heat transfer method for the solid fuel. The correlation is found for the maximum regression rate versus an imposed inlet swirl when the linear distribution of the circumferential velocity is applied at the inlet stream. Although the regression rate augmentation is considerable due to the swirling flow field in the combustor, it is shown that the swirl is effective if is applied near the shear layer of the backstep flow in the combustor. The modified swirler with short blades is suggested to be used in solid fuel ramjets to increase the regression rate of the fuel and improve the performance, but with lower pressure loss.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 190
Author(s):  
Francesco Barato

Ablative-cooled hybrid rockets could potentially combine a similar versatility of a liquid propulsion system with a much simplified architecture. These characteristics make this kind of propulsion attractive, among others, for applications such as satellites and upper stages. In this paper, the use of hybrid rockets for those situations is reviewed. It is shown that, for a competitive implementation, several challenges need to be addressed, which are not the general ones often discussed in the hybrid literature. In particular, the optimal thrust to burning time ratio, which is often relatively low in liquid engines, has a deep impact on the grain geometry, that, in turn, must comply some constrains. The regression rate sometime needs to be tailored in order to avoid unreasonable grain shapes, with the consequence that the dimensional trends start to follow some sort of counter-intuitive behavior. The length to diameter ratio of the hybrid combustion chamber imposes some packaging issues in order to compact the whole propulsion system. Finally, the heat soak-back during long off phases between multiple burns could compromise the integrity of the case and of the solid fuel. Therefore, if the advantages of hybrid propulsion are to be exploited, the aspects mentioned in this paper shall be carefully considered and properly faced.


Author(s):  
M.M. Nekhamin ◽  
D.L. Bondzyk

The existing difference in the models used to describe the burning rate of solid fuel particles, and, accordingly, the difference in the constants appearing in them, determines the relevance of the formulation of the relation between the constants known from the literature and the parameters that must be set in programs for CFD modeling of heat and power processes. This, in particular, relates to modeling the combustion of solid fuels in the well-known program ANSYS FLUENT. The paper outlines a possible approach to solving this problem. Bibl. 5, Fig. 3.


2020 ◽  
Vol 36 (6) ◽  
pp. 933-941
Author(s):  
A. M. Tahsini

ABSTRACTThe performance of the solid fuel ramjet is accurately predicted using full part simulation of this propulsion system, where the flow fields of the intake, combustion chamber, and the nozzle are numerically studied all together. The conjugate heat transfer is considered between the solid phase and the gas phase to directly compute the regression rate of the fuel. The finite volume solver of the compressible turbulent reacting flow is utilized to study the axisymmetric three dimensional flow fields, and two blocks are used to discretize the computational domain. It is shown that the combustion chamber's pressure is changed due to the fuel flow rate's increment which must be taken into account in predictions. The results demonstrate that omitting the pressure dependence of the regression rate and also the effect of the combustor's inlet profile on the regression rate, which specially exists when simulating the combustion chamber individually, under-predicts the solid fuel burning rate when the regression rate augmentation technique is applied to improve the performance of the solid fuel ramjets. It is also illustrated that using the inlet swirl to increase the regression rate of the solid fuel augments considerably the thrust level of the considered SFRJ, while the predictions without considering all parts of the ramjet is not accurate.


2003 ◽  
Vol 800 ◽  
Author(s):  
Kenneth K. Kuo ◽  
Grant A. Risha ◽  
Brian J. Evans ◽  
Eric Boyer

ABSTRACTNano-sized energetic metals and boron particles (with dimensions less than 100 nanometers) possess desirable combustion characteristics such as high heats of combustion and fast energy release rates. Because of their capability to enhance performance, various metals have been introduced in solid propellant formulations, gel propellants, and solid fuels. There are many advantages of incorporating nano-sized materials into fuels and propellants, such as: 1) shortened ignition delay; 2) shortened burn times, resulting in more complete combustion in volume-limited propulsion systems; 3) enhanced heat-transfer rates from higher specific surface area; 4) greater flexibility in designing new energetic fuel/propellants with desirable physical properties; 5) nano-particles can act as a gelling agent to replace inert or low-energy gellants; 6) nano-sized particles can also be dispersed into high-temperature zone for direct oxidation reaction and rapid energy release, and 7) enhanced propulsive performance with increased density impulse. In view of these advantages, numerous techniques have been developed for synthesizing nano-particles of different sizes and shapes. To reduce any possible hazards associated with the handling of nano-sized particles as well as unwanted particle oxidation, various passivation procedures have been developed. Some of these coating materials could enhance the ignition and combustion behavior, others could increase the compatibility of the particles with the surrounding material. Many researchers have been actively engaged in the characterization of the ignition and combustion behavior of nano-sized particles as well as the assessment of performance enhancement of propellants and fuels containing energetic nano-particles. For example, solid fuels could contain a significant percentage of nano-sized particles to increase the mass-burning rate in hybrid rocket motors, the regression rate of solid propellants can be increased by several times when nano-sized particles are incorporated into the formulation. Specifically, hybrid motor data showed that the addition of 13% energetic aluminum powders can increase the linear regression rate of solid HTPB-based fuel by 123% in comparison to the non-aluminized HTPB fuel at a moderate gaseous oxidizer mass flow rate. Strand burner studies of two identical solid propellant formulations (one with 18% regular aluminum powder and the other with 9% aluminum replaced by Alex® powder) showed that nano-sized particles can increase the linear burning rate of solid propellants by 100%. In addition to solid fuels and propellants, spray combustion of bipropellants has been conducted using gel propellants impregnated with nano-sized boron particles as the fuel in a rocket engine. High combustion efficiencies were obtained from burning nano-sized boron particles contained in a non-toxic liquid-fuel spray. Materials characterization such as chemical analyses to determine the active aluminum content, density measurements, and imaging using an electron microscope have been performed on both neat nano-sized particles and mixtures containing the energetic materials. In general, using energetic nano-sized particles as a new design parameter, propulsion performance of future propellants and fuels can be greatly enhanced.


Sign in / Sign up

Export Citation Format

Share Document