scholarly journals Repair kinetics of DNA double-strand breaks and incidence of apoptosis in mouse neural stem/progenitor cells and their differentiated neurons exposed to ionizing radiation

2018 ◽  
Vol 59 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Hiroki Kashiwagi ◽  
Kazunori Shiraishi ◽  
Kenta Sakaguchi ◽  
Tomoya Nakahama ◽  
Seiji Kodama
2020 ◽  
Vol 6 (44) ◽  
pp. eaba0682 ◽  
Author(s):  
Jingzheng Li ◽  
Yafang Shang ◽  
Lin Wang ◽  
Bo Zhao ◽  
Chunli Sun ◽  
...  

Endogenous DNA double-strand breaks (DSBs) formation and repair in neural stem/progenitor cells (NSPCs) play fundamental roles in neurogenesis and neurodevelopmental disorders. NSPCs exhibit heterogeneity in terms of lineage fates and neurogenesis activity. Whether NSPCs also have heterogeneous regulations on DSB formation and repair to accommodate region-specific neurogenesis has not been explored. Here, we identified a regional regulator Filia, which is predominantly expressed in mouse hippocampal NSPCs after birth and regulates DNA DSB formation and repair. On one hand, Filia protects stalling replication forks and prevents the replication stress-associated DNA DSB formation. On the other hand, Filia facilitates the homologous recombination–mediated DNA DSB repair. Consequently, Filia−/− mice had impaired hippocampal NSPC proliferation and neurogenesis and were deficient in learning, memory, and mood regulations. Thus, our study provided the first proof of concept demonstrating the region-specific regulations of DSB formation and repair in subtypes of NSPCs.


2016 ◽  
Vol 113 (8) ◽  
pp. 2258-2263 ◽  
Author(s):  
Bjoern Schwer ◽  
Pei-Chi Wei ◽  
Amelia N. Chang ◽  
Jennifer Kao ◽  
Zhou Du ◽  
...  

High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)–deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.


2016 ◽  
Vol 9 (4) ◽  
pp. 821-827 ◽  
Author(s):  
Majid Valizadeh ◽  
Alireza Shirazi ◽  
Pantea Izadi ◽  
Javad Tavakkoli Bazzaz ◽  
Hamed Rezaeejam ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Deepti Sharma ◽  
Louis De Falco ◽  
Sivaraman Padavattan ◽  
Chang Rao ◽  
Susana Geifman-Shochat ◽  
...  

AbstractThe poly(ADP-ribose) polymerase, PARP1, plays a key role in maintaining genomic integrity by detecting DNA damage and mediating repair. γH2A.X is the primary histone marker for DNA double-strand breaks and PARP1 localizes to H2A.X-enriched chromatin damage sites, but the basis for this association is not clear. We characterize the kinetics of PARP1 binding to a variety of nucleosomes harbouring DNA double-strand breaks, which reveal that PARP1 associates faster with (γ)H2A.X- versus H2A-nucleosomes, resulting in a higher affinity for the former, which is maximal for γH2A.X-nucleosome that is also the activator eliciting the greatest poly-ADP-ribosylation catalytic efficiency. The enhanced activities with γH2A.X-nucleosome coincide with increased accessibility of the DNA termini resulting from the H2A.X-Ser139 phosphorylation. Indeed, H2A- and (γ)H2A.X-nucleosomes have distinct stability characteristics, which are rationalized by mutational analysis and (γ)H2A.X-nucleosome core crystal structures. This suggests that the γH2A.X epigenetic marker directly facilitates DNA repair by stabilizing PARP1 association and promoting catalysis.


2021 ◽  
Author(s):  
Supawat Thongthip ◽  
Annika Carlson ◽  
Madzia P. Crossley ◽  
Bjoern Schwer

ABSTRACTRecent work has revealed classes of recurrent DNA double-strand breaks (DSBs) in neural stem/progenitor cells, including transcription-associated, promoter-proximal breaks and recurrent DSB clusters in late-replicating, long neural genes. However, the mechanistic factors promoting these different classes of DSBs in neural stem/progenitor cells are not understood. Here, we elucidated the genome-wide landscape of DNA:RNA hybrid structures called “R-loops” in primary neural stem/progenitor cells in order to assess their contribution to the different classes of DNA break “hotspots”. We report that R-loops in neural stem/progenitor cells are associated primarily with transcribed regions that replicate early and genes that show GC skew in their promoter region. Surprisingly, the majority of genes with recurrent DSB clusters in long, neural genes does not show substantial R-loop accumulation. We implicate R-loops in promoter-proximal DNA break formation in highly transcribed, early replicating regions and conclude that R-loops are not a driver of recurrent double-strand break cluster formation in most long, neural genes. Together, our study provides an understanding of how R-loops may contribute to DNA break hotspots and affect lineage-specific processes in neural stem/progenitor cells.


2019 ◽  
Vol 27 (4) ◽  
pp. 1200-1213 ◽  
Author(s):  
Ainhoa Nieto ◽  
Makoto R. Hara ◽  
Victor Quereda ◽  
Wayne Grant ◽  
Vanessa Saunders ◽  
...  

Abstract Cellular DNA is constantly under threat from internal and external insults, consequently multiple pathways have evolved to maintain chromosomal fidelity. Our previous studies revealed that chronic stress, mediated by continuous stimulation of the β2-adrenergic-βarrestin-1 signaling axis suppresses activity of the tumor suppressor p53 and impairs genomic integrity. In this pathway, βarrestin-1 (βarr1) acts as a molecular scaffold to promote the binding and degradation of p53 by the E3-ubiquitin ligase, MDM2. We sought to determine whether βarr1 plays additional roles in the repair of DNA damage. Here we demonstrate that in mice βarr1 interacts with p53-binding protein 1 (53BP1) with major consequences for the repair of DNA double-strand breaks. 53BP1 is a principle component of the DNA damage response, and when recruited to the site of double-strand breaks in DNA, 53BP1 plays an important role coordinating repair of these toxic lesions. Here, we report that βarr1 directs 53BP1 degradation by acting as a scaffold for the E3-ubiquitin ligase Rad18. Consequently, knockdown of βarr1 stabilizes 53BP1 augmenting the number of 53BP1 DNA damage repair foci following exposure to ionizing radiation. Accordingly, βarr1 loss leads to a marked increase in irradiation resistance both in cells and in vivo. Thus, βarr1 is an important regulator of double strand break repair, and disruption of the βarr1/53BP1 interaction offers an attractive strategy to protect cells against high levels of exposure to ionizing radiation.


Sign in / Sign up

Export Citation Format

Share Document