scholarly journals PARP1 exhibits enhanced association and catalytic efficiency with γH2A.X-nucleosome

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Deepti Sharma ◽  
Louis De Falco ◽  
Sivaraman Padavattan ◽  
Chang Rao ◽  
Susana Geifman-Shochat ◽  
...  

AbstractThe poly(ADP-ribose) polymerase, PARP1, plays a key role in maintaining genomic integrity by detecting DNA damage and mediating repair. γH2A.X is the primary histone marker for DNA double-strand breaks and PARP1 localizes to H2A.X-enriched chromatin damage sites, but the basis for this association is not clear. We characterize the kinetics of PARP1 binding to a variety of nucleosomes harbouring DNA double-strand breaks, which reveal that PARP1 associates faster with (γ)H2A.X- versus H2A-nucleosomes, resulting in a higher affinity for the former, which is maximal for γH2A.X-nucleosome that is also the activator eliciting the greatest poly-ADP-ribosylation catalytic efficiency. The enhanced activities with γH2A.X-nucleosome coincide with increased accessibility of the DNA termini resulting from the H2A.X-Ser139 phosphorylation. Indeed, H2A- and (γ)H2A.X-nucleosomes have distinct stability characteristics, which are rationalized by mutational analysis and (γ)H2A.X-nucleosome core crystal structures. This suggests that the γH2A.X epigenetic marker directly facilitates DNA repair by stabilizing PARP1 association and promoting catalysis.

2021 ◽  
Vol 22 (23) ◽  
pp. 12761
Author(s):  
Thomas J. Hayman ◽  
Peter M. Glazer

Maintenance of genomic integrity is crucial for cell survival. As such, elegant DNA damage response (DDR) systems have evolved to ensure proper repair of DNA double-strand breaks (DSBs) and other lesions that threaten genomic integrity. Towards this end, most therapeutic studies have focused on understanding of the canonical DNA DSB repair pathways to enhance the efficacy of DNA-damaging therapies. While these approaches have been fruitful, there has been relatively limited success to date and potential for significant normal tissue toxicity. With the advent of novel immunotherapies, there has been interest in understanding the interactions of radiation therapy with the innate and adaptive immune responses, with the ultimate goal of enhancing treatment efficacy. While a substantial body of work has demonstrated control of the immune-mediated (extrinsic) responses to DNA-damaging therapies by several innate immune pathways (e.g., cGAS–STING and RIG-I), emerging work demonstrates an underappreciated role of the innate immune machinery in directly regulating tumor cell-intrinsic/cell-autonomous responses to DNA damage.


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 341
Author(s):  
Takashi Oizumi ◽  
Rieko Ohno ◽  
Souichiro Yamabe ◽  
Tomoo Funayama ◽  
Asako J. Nakamura

Radiation is unavoidable in space. Energetic particles in space radiation are reported to induce cluster DNA damage that is difficult to repair. In this study, normal human fibroblasts were irradiated with components of space radiation such as proton, helium, or carbon ion beams. Immunostaining for γ-H2AX and 53BP1 was performed over time to evaluate the kinetics of DNA damage repair. Our data clearly show that the repair kinetics of DNA double strand breaks (DSBs) induced by carbon ion irradiation, which has a high linear energy transfer (LET), are significantly slower than those of proton and helium ion irradiation. Mixed irradiation with carbon ions, followed by helium ions, did not have an additive effect on the DSB repair kinetics. Interestingly, the mean γ-H2AX focus size was shown to increase with LET, suggesting that the delay in repair kinetics was due to damage that is more complex. Further, the 53BP1 focus size also increased in an LET-dependent manner. Repair of DSBs, characterized by large 53BP1 foci, was a slow process within the biphasic kinetics of DSB repair, suggesting non-homologous end joining with error-prone end resection. Our data suggest that the biological effects of space radiation may be significantly influenced by the dose as well as the type of radiation exposure.


Author(s):  
Sang-Min Jang ◽  
Christophe E. Redon ◽  
Haiqing Fu ◽  
Fred E. Indig ◽  
Mirit I. Aladjem

Abstract Background The p97/valosin-containing protein (VCP) complex is a crucial factor for the segregation of ubiquitinated proteins in the DNA damage response and repair pathway. Objective We investigated whether blocking the p97/VCP function can inhibit the proliferation of RepID-deficient cancer cells using immunofluorescence, clonogenic survival assay, fluorescence-activated cell sorting, and immunoblotting. Result p97/VCP was recruited to chromatin and colocalized with DNA double-strand breaks in RepID-deficient cancer cells that undergo spontaneous DNA damage. Inhibition of p97/VCP induced death of RepID-depleted cancer cells. This study highlights the potential of targeting p97/VCP complex as an anticancer therapeutic approach. Conclusion Our results show that RepID is required to prevent excessive DNA damage at the endogenous levels. Localization of p97/VCP to DSB sites was induced based on spontaneous DNA damage in RepID-depleted cancer cells. Anticancer drugs targeting p97/VCP may be highly potent in RepID-deficient cells. Therefore, we suggest that p97/VCP inhibitors synergize with RepID depletion to kill cancer cells.


2021 ◽  
Vol 22 (14) ◽  
pp. 7638
Author(s):  
Yvonne Lorat ◽  
Judith Reindl ◽  
Anna Isermann ◽  
Christian Rübe ◽  
Anna A. Friedl ◽  
...  

Background: Charged-particle radiotherapy is an emerging treatment modality for radioresistant tumors. The enhanced effectiveness of high-energy particles (such as heavy ions) has been related to the spatial clustering of DNA lesions due to highly localized energy deposition. Here, DNA damage patterns induced by single and multiple carbon ions were analyzed in the nuclear chromatin environment by different high-resolution microscopy approaches. Material and Methods: Using the heavy-ion microbeam SNAKE, fibroblast monolayers were irradiated with defined numbers of carbon ions (1/10/100 ions per pulse, ipp) focused to micrometer-sized stripes or spots. Radiation-induced lesions were visualized as DNA damage foci (γH2AX, 53BP1) by conventional fluorescence and stimulated emission depletion (STED) microscopy. At micro- and nanoscale level, DNA double-strand breaks (DSBs) were visualized within their chromatin context by labeling the Ku heterodimer. Single and clustered pKu70-labeled DSBs were quantified in euchromatic and heterochromatic regions at 0.1 h, 5 h and 24 h post-IR by transmission electron microscopy (TEM). Results: Increasing numbers of carbon ions per beam spot enhanced spatial clustering of DNA lesions and increased damage complexity with two or more DSBs in close proximity. This effect was detectable in euchromatin, but was much more pronounced in heterochromatin. Analyzing the dynamics of damage processing, our findings indicate that euchromatic DSBs were processed efficiently and repaired in a timely manner. In heterochromatin, by contrast, the number of clustered DSBs continuously increased further over the first hours following IR exposure, indicating the challenging task for the cell to process highly clustered DSBs appropriately. Conclusion: Increasing numbers of carbon ions applied to sub-nuclear chromatin regions enhanced the spatial clustering of DSBs and increased damage complexity, this being more pronounced in heterochromatic regions. Inefficient processing of clustered DSBs may explain the enhanced therapeutic efficacy of particle-based radiotherapy in cancer treatment.


2019 ◽  
Vol 116 (39) ◽  
pp. 19552-19562 ◽  
Author(s):  
Justine Sitz ◽  
Sophie Anne Blanchet ◽  
Steven F. Gameiro ◽  
Elise Biquand ◽  
Tia M. Morgan ◽  
...  

High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell’s DNA replication and repair machineries to replicate their own genomes. How this host–pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.


Author(s):  
Xinrui Zhang ◽  
Mariana Bobeica ◽  
Michael Unger ◽  
Anastasia Bednarz ◽  
Bjoern Gerold ◽  
...  

Abstract Purpose High-intensity focused ultrasound (HIFU/FUS) has expanded as a noninvasive quantifiable option for hyperthermia (HT). HT in a temperature range of 40–47 °C (thermal dose CEM43 ≥ 25) could work as a sensitizer to radiation therapy (RT). Here, we attempted to understand the tumor radiosensitization effect at the cellular level after a combination treatment of FUS+RT. Methods An in vitro FUS system was developed to induce HT at frequencies of 1.147 and 1.467 MHz. Human head and neck cancer (FaDU), glioblastoma (T98G), and prostate cancer (PC-3) cells were exposed to FUS in ultrasound-penetrable 96-well plates followed by single-dose X‑ray irradiation (10 Gy). Radiosensitizing effects of FUS were investigated by cell metabolic activity (WST‑1 assay), apoptosis (annexin V assay, sub-G1 assay), cell cycle phases (propidium iodide staining), and DNA double-strand breaks (γH2A.X assay). Results The FUS intensities of 213 (1.147 MHz) and 225 W/cm2 (1.467 MHz) induced HT for 30 min at mean temperatures of 45.20 ± 2.29 °C (CEM43 = 436 ± 88) and 45.59 ± 1.65 °C (CEM43 = 447 ± 79), respectively. FUS improves the effect of RT significantly by reducing metabolic activity in T98G cells 48 h (RT: 96.47 ± 8.29%; FUS+RT: 79.38 ± 14.93%; p = 0.012) and in PC-3 cells 72 h (54.20 ± 10.85%; 41.01 ± 11.17%; p = 0.016) after therapy, but not in FaDu cells. Mechanistically, FUS+RT leads to increased apoptosis and enhancement of DNA double-strand breaks compared to RT alone in T98G and PC-3 cells. Conclusion Our in vitro findings demonstrate that FUS has good potential to sensitize glioblastoma and prostate cancer cells to RT by mainly enhancing DNA damage.


2017 ◽  
Vol 372 (1731) ◽  
pp. 20160283 ◽  
Author(s):  
N. Daniel Berger ◽  
Fintan K. T. Stanley ◽  
Shaun Moore ◽  
Aaron A. Goodarzi

Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system. This article is part of the themed issue ‘Chromatin modifiers and remodellers in DNA repair and signalling’.


2018 ◽  
Vol 115 (51) ◽  
pp. E11961-E11969 ◽  
Author(s):  
Tai-Yuan Yu ◽  
Michael T. Kimble ◽  
Lorraine S. Symington

The Mre11-Rad50-Xrs2NBS1 complex plays important roles in the DNA damage response by activating the Tel1ATM kinase and catalyzing 5′–3′ resection at DNA double-strand breaks (DSBs). To initiate resection, Mre11 endonuclease nicks the 5′ strands at DSB ends in a reaction stimulated by Sae2CtIP. Accordingly, Mre11-nuclease deficient (mre11-nd) and sae2Δ mutants are expected to exhibit similar phenotypes; however, we found several notable differences. First, sae2Δ cells exhibit greater sensitivity to genotoxins than mre11-nd cells. Second, sae2Δ is synthetic lethal with sgs1Δ, whereas the mre11-nd sgs1Δ mutant is viable. Third, Sae2 attenuates the Tel1-Rad53CHK2 checkpoint and antagonizes Rad953BP1 accumulation at DSBs independent of Mre11 nuclease. We show that Sae2 competes with other Tel1 substrates, thus reducing Rad9 binding to chromatin and to Rad53. We suggest that persistent Sae2 binding at DSBs in the mre11-nd mutant counteracts the inhibitory effects of Rad9 and Rad53 on Exo1 and Dna2-Sgs1–mediated resection, accounting for the different phenotypes conferred by mre11-nd and sae2Δ mutations. Collectively, these data show a resection initiation independent role for Sae2 at DSBs by modulating the DNA damage checkpoint.


2015 ◽  
Vol 112 (24) ◽  
pp. 7507-7512 ◽  
Author(s):  
Ozge Gursoy-Yuzugullu ◽  
Marina K. Ayrapetov ◽  
Brendan D. Price

The repair of DNA double-strand breaks (DSBs) requires open, flexible chromatin domains. The NuA4–Tip60 complex creates these flexible chromatin structures by exchanging histone H2A.Z onto nucleosomes and promoting acetylation of histone H4. Here, we demonstrate that the accumulation of H2A.Z on nucleosomes at DSBs is transient, and that rapid eviction of H2A.Z is required for DSB repair. Anp32e, an H2A.Z chaperone that interacts with the C-terminal docking domain of H2A.Z, is rapidly recruited to DSBs. Anp32e functions to remove H2A.Z from nucleosomes, so that H2A.Z levels return to basal within 10 min of DNA damage. Further, H2A.Z removal by Anp32e disrupts inhibitory interactions between the histone H4 tail and the nucleosome surface, facilitating increased acetylation of histone H4 following DNA damage. When H2A.Z removal by Anp32e is blocked, nucleosomes at DSBs retain elevated levels of H2A.Z, and assume a more stable, hypoacetylated conformation. Further, loss of Anp32e leads to increased CtIP-dependent end resection, accumulation of single-stranded DNA, and an increase in repair by the alternative nonhomologous end joining pathway. Exchange of H2A.Z onto the chromatin and subsequent rapid removal by Anp32e are therefore critical for creating open, acetylated nucleosome structures and for controlling end resection by CtIP. Dynamic modulation of H2A.Z exchange and removal by Anp32e reveals the importance of the nucleosome surface and nucleosome dynamics in processing the damaged chromatin template during DSB repair.


Sign in / Sign up

Export Citation Format

Share Document