scholarly journals Yellow fever in Asia–a risk analysis

Author(s):  
Bethan Cracknell Daniels ◽  
Katy Gaythorpe ◽  
Natsuko Imai ◽  
Ilaria Dorigatti

Abstract Background There is concern about the risk of yellow fever (YF) establishment in Asia, owing to rising numbers of urban outbreaks in endemic countries and globalisation. Following an outbreak in Angola in 2016, YF cases were introduced into China. Prior to this, YF had never been recorded in Asia, despite climatic suitability and the presence of mosquitoes. An outbreak in Asia could result in widespread fatalities and huge economic impact. Therefore, quantifying the potential risk of YF outbreaks in Asia is a public health priority. Methods Using international flight data and YF incidence estimates from 2016, we quantified the risk of YF introduction via air travel into Asia. In locations with evidence of a competent mosquito population, the potential for autochthonous YF transmission was estimated using a temperature-dependent model of the reproduction number and a branching process model assuming a negative binomial distribution. Results In total, 25 cities across Asia were estimated to be at risk of receiving at least one YF viraemic traveller during 2016. At their average temperatures, we estimated the probability of autochthonous transmission to be <50% in all cities, which was primarily due to the limited number of estimated introductions that year. Conclusion Despite the rise in air travel, we found low support for travel patterns between YF endemic countries and Asia resulting in autochthonous transmission during 2016. This supports the historic absence of YF in Asia and suggests it could be due to a limited number of introductions in previous years. Future increases in travel volumes or YF incidence can increase the number of introductions and the risk of autochthonous transmission. Given the high proportion of asymptomatic or mild infections and the challenges of YF surveillance, our model can be used to estimate the introduction and outbreak risk and can provide useful information to surveillance systems.

2011 ◽  
Vol 519 (9) ◽  
pp. 2859-2862
Author(s):  
E. Montgomery ◽  
C. Krahmer ◽  
K. Streubel ◽  
T. Hofmann ◽  
E. Schubert ◽  
...  

2020 ◽  
Vol 146 (12) ◽  
pp. 04020136
Author(s):  
Farshid Vahedifard ◽  
Sannith Kumar Thota ◽  
Toan Duc Cao ◽  
Radhavi Abeysiridara Samarakoon ◽  
John S. McCartney

Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 266-272 ◽  
Author(s):  
David L. Holshouser ◽  
James M. Chandler

Research was conducted to formulate a temperature-dependent population-level model for rhizome johnsongrass flowering. A nonlinear poikilotherm rate equation was used to describe development as a function of temperature and a temperature-independent Weibull function was used to distribute development times for the population. Johnsongrass flowering data were collected under constant temperature conditions to parameterize the poikilotherm rate equation and Weibull function. Coupling the poikilotherm rate equation with the Weibull function resulted in a population level temperature-dependent model. The model was validated against independent field data sets. The model accurately predicted rhizome johnsongrass flowering from plants emerging in the spring. The model performed poorly for plants emerging in summer. Adjustments to the high-temperature inhibition parameter of the poikilotherm rate equation improved model performance in the summer without affecting spring predictions.


Sign in / Sign up

Export Citation Format

Share Document