scholarly journals Correlation and co-localization of QTL for stomatal density, canopy temperature and productivity with and without drought stress in Setaria

Author(s):  
Parthiban Thathapalli Prakash ◽  
Darshi Banan ◽  
Rachel E Paul ◽  
Maximilian J Feldman ◽  
Dan Xie ◽  
...  

Abstract Mechanistic modeling indicates that stomatal conductance could be reduced to improve water use efficiency (WUE) in C4 crops. Genetic variation in stomatal density and canopy temperature was evaluated in the model C4 genus, Setaria. Recombinant inbred lines (RIL) derived from a Setaria italica x Setaria viridis cross were grown with ample or limiting water supply under field conditions in Illinois. An optical profilometer was used to rapidly assess stomatal patterning and canopy temperature was measured using infrared imaging. Stomatal density and canopy temperature were positively correlated but both were negatively correlated with total above-ground biomass. These trait relationships suggest a likely interaction between stomatal density and the other drivers of water use such as stomatal size and aperture. Multiple QTLs were identified for stomatal density and canopy temperature, including co-located QTLs on chromosomes 5 and 9. The direction of the additive effect of these QTLs on chromosome 5 and 9 were in accordance with the positive phenotypic relationship between these two traits. This along with prior experiments suggests a common genetic architecture between stomatal patterning and WUE in controlled environments with canopy transpiration and productivity in the field, while highlighting the potential of Setaria as a model to understand the physiology and genetics of WUE in C4 species.

2020 ◽  
Author(s):  
Parthiban Thathapalli Prakash ◽  
Darshi Banan ◽  
Rachel E. Paul ◽  
Maximilian J. Feldman ◽  
Dan Xie ◽  
...  

AbstractMechanistic modeling indicates that stomatal conductance could be reduced to improve water use efficiency (WUE) in C4 crops. Genetic variation in stomatal density and canopy temperature was evaluated in the model C4 genus, Setaria. Recombinant inbred lines (RIL) derived from a Setaria italica x Setaria viridis cross were grown with ample or limiting water supply under field conditions in Illinois. An optical profilometer was used to rapidly assess stomatal patterning and canopy temperature was measured using infrared imaging. Stomatal density and canopy temperature were positively correlated but both were negatively correlated with total above-ground biomass. These trait relationships suggest a likely interaction between stomatal density and the other drivers of water use such as stomatal size and aperture. Multiple QTLs were identified for stomatal density and canopy temperature, including co-located QTLs on chromosomes 5 and 9. The direction of the additive effect of these QTLs on chromosome 5 and 9 were in accordance with the positive phenotypic relationship between these two traits. This suggests a common genetic architecture between stomatal patterning in the greenhouse and canopy transpiration in the field, while highlighting the potential of setaria as a model to understand the physiology and genetics of WUE in C4 species.HighlightThis article reports a phenotypic and genetic relationship between two water use related traits operating at leaf level and canopy level in a C4 model crop species.


2010 ◽  
Vol 22 (12) ◽  
pp. 4128-4141 ◽  
Author(s):  
Chan Yul Yoo ◽  
Heather E. Pence ◽  
Jing Bo Jin ◽  
Kenji Miura ◽  
Michael J. Gosney ◽  
...  

2003 ◽  
Vol 128 (3) ◽  
pp. 356-362 ◽  
Author(s):  
D. Michael Glenn ◽  
Amnon Erez ◽  
Gary J. Puterka ◽  
Patricia Gundrum

Processed-kaolin particle films (PKPFs) are used commercially in large quantities on horticultural crops to repel insects, and reduce heat stress and solar injury of fruit. Our studies determined the effect of two processed-mineral particle film materials (kaolin and calcium carbonate), on whole plant carbon assimilation, water use efficiency, yield, mean fruit weight and quality in `Empire' apple [(Malus ×sylvestris (L.) Mill var. domestica (Borkh Mansf.))] over a four-year period. The application of a PKPF reduced canopy temperature, and probably reduced environmental stress, resulting in increased mean fruit weight and red color in two of the four years of the study. Whole canopy carbon assimilation studies indicated increased carbon assimilation only under conditions of high air temperature. The PKPF sprayed leaves also had reduced water use efficiency; likely due to increased stomatal conductance associated with reduced leaf temperature. Calcium carbonate had none of the positive effects of PKPF and reflected more photosynthetically active radiation (PAR) than the PKPF.


2017 ◽  
Author(s):  
Xiao-Yu Guo ◽  
Yao Wang ◽  
Ping Xu ◽  
Guo-Hua Yu ◽  
Li-Yong Zhang ◽  
...  

AbstractImprovement of crop drought resistance and water use efficiency (WUE) has been a major endeavor in agriculture. ERECTA is the first identified major effector of water use efficiency. However, the underlying molecular mechanism is not well understood. Here, we report a genetic pathway, composed of EDT1/HDG11, ERECTA, and E2Fa loci, which regulates water use efficiency by modulating stomatal density. The HD-START transcription factor EDT1/HDG11 transcriptionally activates ERECTA expression by binding to an HD cis-element in the ERECTA promoter. ERECTA in turn relies on E2Fa to control the expression of cell-cycle related genes and the transition from mitosis to endocycle, which leads to increased nuclear DNA content in leaf cells, and therefore increased cell size and decreased stomatal density. The decreased stomatal density improves plant WUE. Our study demonstrates the EDT1/HDG11-ERECTA-E2Fa genetic pathway that reduces stomatal density by increasing cell size, providing a new avenue to improve WUE of crops.


2021 ◽  
Vol 4 ◽  
Author(s):  
Mahya Tavan ◽  
Benjamin Wee ◽  
Graham Brodie ◽  
Sigfredo Fuentes ◽  
Alexis Pang ◽  
...  

With water resources constantly becoming scarcer, and 70% of freshwater used for the agriculture sector, there is a growing need for innovative methods to increase water use efficiency (WUE) of food production systems and provide nutrient-dense food to an increasing population. Sensor technology has recently been introduced to the horticulture industry to increase resource use efficiency and minimize the environmental impacts of excessive water use. Identifying the effects of irrigation levels on crop performance is crucial for the success of sensor-based water management. This research aimed to optimize WUE in a soilless microgreen production system through identification of an optimal irrigation level using a sensor that could facilitate the development of a more efficient, low-cost automated irrigation system. A dielectric moisture sensor was implemented to monitor water levels at five irrigation setpoints: 7.5, 17.5, 25, 30, and 35 percent of the effective volume of the container (EVC) during a 14-day growth cycle. To validate the sensor performance, the same irrigation levels were applied to a parallel trial, without sensor, and water levels were monitored gravimetrically. Plant water status and stress reaction were evaluated using infrared thermal imaging, and the accumulation of osmolytes (proline) was determined. Results showed that, proline concentration, canopy temperature (Tc), canopy temperature depression (CTD), and crop water stress index (CWSI) increased at 7.5% EVC in both sensor-based and gravimetric treatments, and infrared index (Ig) and fresh yield decreased. The dielectric moisture sensor was effective in increasing WUE. The irrigation level of 17.5% EVC was found to be optimal. It resulted in a WUE of 88 g/L, an improvement of 30% over the gravimetric method at the same irrigation level. Furthermore, fresh yield increased by 11.5%. The outcome of this study could contribute to the automation of precision irrigation in hydroponically grown microgreens.


HortScience ◽  
2010 ◽  
Vol 45 (8) ◽  
pp. 1178-1187 ◽  
Author(s):  
D. Michael Glenn ◽  
Nicola Cooley ◽  
Rob Walker ◽  
Peter Clingeleffer ◽  
Krista Shellie

Water use efficiency (WUE) and response of grape vines (Vitis vinifera L. cvs. ‘Cabernet Sauvignon’, ‘Merlot’, and ‘Viognier’) to a particle film treatment (PFT) under varying levels of applied water were evaluated in Victoria, Australia, and southwestern Idaho. Vines that received the least amount of water had the warmest canopy or leaf surface temperature and the lowest (more negative) leaf water potential, stomatal conductance (gS), transpiration (E), and photosynthesis (A). Vines with plus-PFT had cooler leaf and canopy temperature than non-PFT vines; however, temperature difference resulting from irrigation was greater than that resulting from PFT. In well-watered vines, particle film application increased leaf water potential and lowered gS. Point-in-time measurements of WUE (A/E) and gS did not consistently correspond with seasonal estimates of WUE based on carbon isotope discrimination of leaf or shoot tissue. The response of vines with particle film to undergo stomatal closure and increase leaf water potential conserved water and enhanced WUE under non-limiting soil moisture conditions and the magnitude of response differed according to cultivar.


2012 ◽  
Vol 195 (1) ◽  
pp. 164-171 ◽  
Author(s):  
Andy VanLoocke ◽  
Amy M. Betzelberger ◽  
Elizabeth A. Ainsworth ◽  
Carl J. Bernacchi

Sign in / Sign up

Export Citation Format

Share Document