scholarly journals Correlation and co-localization of QTL for stomatal density and canopy temperature under drought stress in Setaria

2020 ◽  
Author(s):  
Parthiban Thathapalli Prakash ◽  
Darshi Banan ◽  
Rachel E. Paul ◽  
Maximilian J. Feldman ◽  
Dan Xie ◽  
...  

AbstractMechanistic modeling indicates that stomatal conductance could be reduced to improve water use efficiency (WUE) in C4 crops. Genetic variation in stomatal density and canopy temperature was evaluated in the model C4 genus, Setaria. Recombinant inbred lines (RIL) derived from a Setaria italica x Setaria viridis cross were grown with ample or limiting water supply under field conditions in Illinois. An optical profilometer was used to rapidly assess stomatal patterning and canopy temperature was measured using infrared imaging. Stomatal density and canopy temperature were positively correlated but both were negatively correlated with total above-ground biomass. These trait relationships suggest a likely interaction between stomatal density and the other drivers of water use such as stomatal size and aperture. Multiple QTLs were identified for stomatal density and canopy temperature, including co-located QTLs on chromosomes 5 and 9. The direction of the additive effect of these QTLs on chromosome 5 and 9 were in accordance with the positive phenotypic relationship between these two traits. This suggests a common genetic architecture between stomatal patterning in the greenhouse and canopy transpiration in the field, while highlighting the potential of setaria as a model to understand the physiology and genetics of WUE in C4 species.HighlightThis article reports a phenotypic and genetic relationship between two water use related traits operating at leaf level and canopy level in a C4 model crop species.

Author(s):  
Parthiban Thathapalli Prakash ◽  
Darshi Banan ◽  
Rachel E Paul ◽  
Maximilian J Feldman ◽  
Dan Xie ◽  
...  

Abstract Mechanistic modeling indicates that stomatal conductance could be reduced to improve water use efficiency (WUE) in C4 crops. Genetic variation in stomatal density and canopy temperature was evaluated in the model C4 genus, Setaria. Recombinant inbred lines (RIL) derived from a Setaria italica x Setaria viridis cross were grown with ample or limiting water supply under field conditions in Illinois. An optical profilometer was used to rapidly assess stomatal patterning and canopy temperature was measured using infrared imaging. Stomatal density and canopy temperature were positively correlated but both were negatively correlated with total above-ground biomass. These trait relationships suggest a likely interaction between stomatal density and the other drivers of water use such as stomatal size and aperture. Multiple QTLs were identified for stomatal density and canopy temperature, including co-located QTLs on chromosomes 5 and 9. The direction of the additive effect of these QTLs on chromosome 5 and 9 were in accordance with the positive phenotypic relationship between these two traits. This along with prior experiments suggests a common genetic architecture between stomatal patterning and WUE in controlled environments with canopy transpiration and productivity in the field, while highlighting the potential of Setaria as a model to understand the physiology and genetics of WUE in C4 species.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 303
Author(s):  
Sungeun Lim ◽  
Jongyun Kim

Different light qualities affect plant growth and physiological responses, including stomatal openings. However, most researchers have focused on stomatal responses to red and blue light only, and the direct measurement of evapotranspiration has not been examined. Therefore, we quantified the evapotranspiration of sweet basil under various red (R), green (G), and blue (B) combinations using light-emitting diodes (LEDs) and investigated its stomatal responses. Seedlings were subjected to five different spectral treatments for two weeks at a photosynthetic photon flux density of 200 µmol m−2 s−1. The ratios of the RGB light intensities were as follows: R 100% (R100), R:G = 75:25 (R75G25), R:B = 75:25 (R75B25), R:G:B = 60:20:20 (R60G20B20), and R:G:B = 31:42:27 (R31G42B27). During the experiment, the evapotranspiration of the plants was measured using load cells. Although there were no significant differences in growth parameters among the treatments, the photosynthetic rate and stomatal conductance were higher in plants grown under blue LEDs (R75B25, R60G20B20, and R31G42B27) than in the R100 treatment. The amount of water used was different among the treatments (663.5, 726.5, 728.7, 778.0, and 782.1 mL for the R100, R75G25, R60G20B20, R75B25, and R31G42B27 treatments, respectively). The stomatal density was correlated with the blue light intensity (p = 0.0024) and with the combined intensity of green and blue light (p = 0.0029); therefore, green light was considered to promote the stomatal development of plants together with blue light. Overall, different light qualities affected the water use of plants by regulating stomatal conductance, including changes in stomatal density.


2021 ◽  
Vol 13 (7) ◽  
pp. 3910
Author(s):  
Michael Gräf ◽  
Markus Immitzer ◽  
Peter Hietz ◽  
Rosemarie Stangl

Urban green infrastructures offer thermal regulation to mitigate urban heat island effects. To gain a better understanding of the cooling ability of transpiring plants at the leaf level, we developed a method to measure the time series of thermal data with a miniaturized, uncalibrated thermal infrared camera. We examined the canopy temperature of four characteristic living wall plants (Heuchera x cultorum, Bergenia cordifolia, Geranium sanguineum, and Brunnera macrophylla) under increasing drought stress and compared them with a well-watered control group. The method proved suitable to evaluate differences in canopy temperature between the different treatments. Leaf temperatures of water-stressed plants were 6 to 8 °C higher than those well-watered, with differences among species. In order to cool through transpiration, vegetation in green infrastructures must be sufficiently supplied with water. Thermal cameras were found to be useful to monitor vertical greening because leaf surface temperature is closely related to drought stress. The usage of thermal cameras mounted on unmanned aerial vehicles could be a rapid and easy monitoring system to cover large façades.


2010 ◽  
Vol 4 (4) ◽  
pp. 236-248 ◽  
Author(s):  
X. Chen ◽  
J. Dhungel ◽  
S. P. Bhattarai ◽  
M. Torabi ◽  
L. Pendergast ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Fei Li ◽  
Dagang Guo ◽  
Xiaodong Gao ◽  
Xining Zhao

Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (Pn) and transpiration rates (Tr) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased Pn and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased Pn by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced Pn by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of Pn and Tr, whereas a water deficit induced increase in WUE was linked to the decrease in Tr. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.


2021 ◽  
Author(s):  
Sean M Gleason ◽  
Lauren Nalezny ◽  
Cameron Hunter ◽  
Robert Bensen ◽  
Satya Chintamanani ◽  
...  

There is increasing interest in understanding how trait networks can be manipulated to improve the performance of crop species. Working towards this goal, we have identified key traits linking the acquisition of water, the transport of water to the sites of evaporation and photosynthesis, stomatal conductance, and growth across eight maize hybrid lines grown under well-watered and water-limiting conditions in Northern Colorado. Under well-watered conditions, well-performing hybrids exhibited high leaf-specific conductance, low operating water potentials, high rates of midday stomatal conductance, high rates of net CO2 assimilation, greater leaf osmotic adjustment, and higher end-of-season growth and grain yield. This trait network was similar under water-limited conditions with the notable exception that linkages between water transport, midday stomatal conductance, and growth were even stronger than under fully-watered conditions. The results of this experiment suggest that similar trait networks might confer improved performance under contrasting climate and soil conditions, and that efforts to improve the performance of crop species could possibly benefit by considering the water transport pathway within leaves, as well as within the whole-xylem, in addition to root-level and leaf-level traits.


The phenotypic variation that the breeder must manipulate to produce improved genotypes typically contains contributions from both heritable and non-heritable sources as well as from interactions between them. The totality of this variation can be understood only in terms of a methodology such as that of biometrical genetics - an extension of classical Mendelian genetics that retains all of its analytical, interpretative and predictive powers but only in respect of the net or summed effects of all contributing gene loci. In biometrical genetics the statistics that describe the phenotypic distributions are themselves completely described by heritable components based on the known types of gene action and interaction in combination with nonheritable components defined by the statistical properties of the experimental design. Biometrical genetics provides a framework for investigating the genetical basis and justification for current plant breeding strategies that are typified by the production of F 1 hybrids at one extreme and recombinant inbred lines at the other. From the early generations of a cross it can extract estimates of the heritable components of the phenotypic distributions that provide all the information required to interpret the cause of F 1 heterosis and predict the properties of any generation that can subsequently be derived from the cross. Applications to crosses in experimental and crop species show that true overdominance is not a cause of F 1 heterosis, although spurious overdominance arising from linkage disequilibria and non-allelic interactions can be. Predictions of the phenotypic distributions and ranges of recombinant inbred lines that should be extractable from these crosses are confirmed by observations made on random samples of inbred families produced from them by single seed descent. Within these samples, recombinant inbred lines superior to existing inbred lines and their F 1 hybrids are observed with the predicted frequencies.


Sign in / Sign up

Export Citation Format

Share Document