Embedding countable partial orderings in the enumeration degrees and the  -enumeration degrees

2010 ◽  
Vol 22 (4) ◽  
pp. 927-952 ◽  
Author(s):  
M. I. Soskova ◽  
I. N. Soskov
1985 ◽  
Vol 50 (4) ◽  
pp. 983-1001 ◽  
Author(s):  
Kevin McEvoy ◽  
S. Barry Cooper

For sets of natural numbers A and B, A is enumeration reducible to B if there is some effective algorithm which when given any enumeration of B will produce an enumeration of A. Gutteridge [5] has shown that in the upper semilattice of the enumeration degrees there are no minimal degrees (see Cooper [3]), and in this paper we study those pairs of degrees with gib 0. Case [1] constructed a minimal pair. This minimal pair construction can be relativised to any gib, and following a suggestion of Jockusch we can also fix one of the degrees and still construct the pair. These methods yield an easier proof of Case's exact pair theorem for countable ideals. 0″ is an upper bound for the minimal pair constructed in §1, and in §2 we improve this bound to any Σ2-high Δ2 degree. In contrast to this we show that every low degree c bounds a degree a which is not in any minimal pair bounded by c. The structure of the co-r.e. e-degrees is isomorphic to that of the r.e. Turing degrees, and Gutteridge has constructed co-r.e. degrees which form a minimal pair in the e-degrees. In §3 we show that if a, b is any minimal pair of co-r.e. degrees such that a is low then a, b is a minimal pair in the e-degrees (and so Gutteridge's result follows). As a corollary of this we can embed any countable distributive lattice and the two nondistributive five-element lattices in the e-degrees below 0′. However the lowness assumption is necessary, as we also prove that there is a minimal pair of (high) r.e. degrees which is not a minimal pair in the e-degrees (under the isomorphism). In §4 we present more concise proofs of some unpublished work of Lagemann on bounding incomparable pairs and embedding partial orderings.As usual, {Wi}i ∈ ω is the standard listing of the recursively enumerable sets, Du is the finite set with canonical index u and {‹ m, n ›}m, n ∈ ω is a recursive, one-to-one coding of the pairs of numbers onto the numbers. Capital italic letters will be variables over sets of natural numbers, and lower case boldface letters from the beginning of the alphabet will vary over degrees.


2012 ◽  
Vol 3 (8) ◽  
pp. 1-6
Author(s):  
Dr. G.Ramesh Dr. G.Ramesh ◽  
◽  
Dr. B.K.N.Muthugobal Dr. B.K.N.Muthugobal
Keyword(s):  

2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Joshua Banks Mailman

Babbitt’s relatively early composition Semi-Simple Variations (1956) presents intriguing surface patterns that are not determined by its pre-compositional plan, but rather result from subsequent “improvised” decisions that are strategic. This video (the third of a three-part video essay) considers Babbitt’s own conversational pronouncements (in radio interviews) together with some particulars of his life-long musical activities, that together suggest uncanny affiliations to jazz improvisation. As a result of Babbitt’s creative reconceptualizing of planning and spontaneity in music, his pre-compositional structures (partial orderings) fit in an unexpected way into (or reformulate) the ecosystem relating music composition to the physical means of its performance.


1991 ◽  
Vol 149 ◽  
pp. 73-89 ◽  
Author(s):  
Jerzy K. Baksalary ◽  
Sujit Kumar Mitra
Keyword(s):  

1996 ◽  
Vol 54 (4) ◽  
pp. 3135-3141 ◽  
Author(s):  
A. S. Landsberg ◽  
Eric J. Friedman

1968 ◽  
Vol 20 ◽  
pp. 535-554 ◽  
Author(s):  
R. A. Dean ◽  
Gordon Keller

Let n be an ordinal. A partial ordering P of the ordinals T = T(n) = {w: w < n} is called natural if x P y implies x ⩽ y.A natural partial ordering, hereafter abbreviated NPO, of T(n) is thus a coarsening of the natural total ordering of the ordinals. Every partial ordering of a finite set 5 is isomorphic to a natural partial ordering. This is a consequence of the theorem of Szpielrajn (5) which states that every partial ordering of a set may be refined to a total ordering. In this paper we consider only natural partial orderings. In the first section we obtain theorems about the lattice of all NPO's of T(n).


1991 ◽  
Vol 28 (3) ◽  
pp. 553-567 ◽  
Author(s):  
François Baccelli

We introduce multivariate partial orderings related with the Palm and time-stationary probabilities of a point process. Using these orderings, we give conditions for the monotonicity of a random sequence, with respect to some integral stochastic ordering, to be inherited with a continuous time process in which this sequence is imbedded. This type of inheritance is also discussed for the property of association.


1992 ◽  
Vol 31 (4) ◽  
pp. 277-285 ◽  
Author(s):  
Alistair H. Lachlan ◽  
Richard A. Shore
Keyword(s):  

1985 ◽  
Vol 50 (2) ◽  
pp. 531-543 ◽  
Author(s):  
Arthur W. Apter

A very fruitful line of research in recent years has been the application of techniques in large cardinals and forcing to the production of models in which certain consequences of the axiom of determinateness (AD) are true or in which certain “AD-like” consequences are true. Numerous results have been published on this subject, among them the papers of Bull and Kleinberg [4], Bull [3], Woodin [15], Mitchell [11], and [1], [2].Another such model will be constructed in this paper. Specifically, the following theorem is proven.Theorem 1. Con(ZFC + There are cardinals κ < δ < λ so that κ is a supercompact limit of supercompact cardinals, λ is a measurable cardinal, and δ is λ supercompact) ⇒ Con(ZF + ℵ1 and ℵ2 are Ramsey cardinals + The ℵn for 3 ≤ n ≤ ω are singular cardinals of cofinality ω each of which carries a Rowbottom filter + ℵω + 1 is a Ramsey cardinal + ℵω + 2 is a measurable cardinal).It is well known that under AD + DC, ℵ2 and ℵ2 are measurable cardinals, the ℵn for 3 ≤ n < ω are singular Jonsson cardinals of cofinality ℵ2, ℵω is a Rowbottom cardinal, and ℵω + 1 and ℵω + 2 are measurable cardinals.The proof of the above theorem will use the existence of normal ultrafilters which satisfy a certain property (*) (to be defined later) and an automorphism argument which draws upon the techniques developed in [9], [2], and [4] but which shows in addition that certain supercompact Prikry partial orderings are in a strong sense “homogeneous”. Before beginning the proof of the theorem, however, we briefly mention some preliminaries.


Sign in / Sign up

Export Citation Format

Share Document