The Crustacean Stomatogastric Nervous System

Author(s):  
Eve Marder

The crustacean stomatogastric nervous system has become one of the premier preparations used for the study of the mechanisms underlying the generation of rhythmic motor patterns. The stomatogastric ganglion (STG) contains about 30 neurons, most of which are motor neurons that innervate more than 40 sets of striated muscles that move the animal’s stomach. Descending projection neurons from the two commissural ganglia (CoGs) and the single oesophageal ganglion (OG) are important for the generation of the motor patterns produced by the STG. Identified sensory neurons project either into the CoGs to activate descending modulatory neurons, or directly into the STG.

1989 ◽  
Vol 61 (4) ◽  
pp. 833-844 ◽  
Author(s):  
P. S. Dickinson ◽  
E. Marder

1. The cardiac sac motor pattern consists of slow and irregular impulse bursts in the motor neurons [cardiac sac dilator 1 and 2 (CD1 and CD2)] that innervate the dilator muscles of the cardiac sac region of the crustacean foregut. 2. The effects of the peptides, proctolin and red pigment-concentrating hormone (RPCH), on the cardiac sac motor patterns produced by in vitro preparations of the combined stomatogastric nervous system [the stomatogastric ganglion (STG), the paired commissural ganglia (CGs), and the oesophageal ganglion (OG)] were studied. 3. Bath applications of either RPCH or proctolin activated the cardiac sac motor pattern when this motor pattern was not already active and increased the frequency of the cardiac sac motor pattern in slowly active preparations. 4. The somata of CD1 and CD2 are located in the esophageal and stomatogastric ganglia, respectively. Both neurons project to all four of the ganglia of the stomatogastric nervous system. RPCH elicited cardiac sac motor patterns when applied to any region of the stomatogastric nervous system, suggesting a distributed pattern generating network with multiple sites of modulation. 5. The anterior median (AM) neuron innervates the constrictor muscles of the cardiac sac. The AM usually functions as a part of the gastric mill pattern generator. However, when the cardiac sac is activated by RPCH applied to the stomatogastric ganglion, the AM neuron becomes active in antiphase with the cardiac sac dilator bursts. This converts the cardiac sac motor pattern from a one-phase rhythm to a two-phase rhythm. 6. These data show that a neuropeptide can cause a neuronal element to switch from being solely a component of one neuronal circuit to functioning in a second one as well. This example shows that peptidergic "reconfiguration" of neuronal networks can produce substantial changes in the behavior of associated neurons.


2000 ◽  
Vol 203 (14) ◽  
pp. 2075-2092 ◽  
Author(s):  
A.M. Swensen ◽  
J. Golowasch ◽  
A.E. Christie ◽  
M.J. Coleman ◽  
M.P. Nusbaum ◽  
...  

The multifunctional neural circuits in the crustacean stomatogastric ganglion (STG) are influenced by many small-molecule transmitters and neuropeptides that are co-localized in identified projection neurons to the STG. We describe the pattern of gamma-aminobutyric acid (GABA) immunoreactivity in the stomatogastric nervous system of the crab Cancer borealis and demonstrate biochemically the presence of authentic GABA in C. borealis. No STG somata show GABA immunoreactivity but, within the stomatogastric nervous system, GABA immunoreactivity co-localizes with several neuropeptides in two identified projection neurons, the modulatory proctolin neuron (MPN) and modulatory commissural neuron 1 (MCN1). To determine which actions of these neurons are evoked by GABA, it is necessary to determine the physiological actions of GABA on STG neurons. We therefore characterized the response of each type of STG neuron to focally applied GABA. All STG neurons responded to GABA. In some neurons, GABA evoked a picrotoxin-sensitive depolarizing, excitatory response with a reversal potential of approximately −40 mV. This response was also activated by muscimol. In many STG neurons, GABA evoked inhibitory responses with both K(+)- and Cl(−)-dependent components. Muscimol and beta-guanidinopropionic acid weakly activated the inhibitory responses, but many other drugs, including bicuculline and phaclofen, that act on vertebrate GABA receptors were not effective. In summary, GABA is found in projection neurons to the crab STG and can evoke both excitatory and inhibitory actions on STG neurons.


2003 ◽  
Vol 469 (2) ◽  
pp. 153-169 ◽  
Author(s):  
Andrew E. Christie ◽  
Wolfgang Stein ◽  
John E. Quinlan ◽  
Mark P. Beenhakker ◽  
Eve Marder ◽  
...  

1993 ◽  
Vol 181 (1) ◽  
pp. 1-26 ◽  
Author(s):  
J. M. Weimann ◽  
E. Marder ◽  
B. Evans ◽  
R. L. Calabrese

TNRNFLRFamide was isolated and sequenced from the stomatogastric nervous system of the crab Cancer borealis by reverse-phase high performance liquid chromatography followed by automated Edman degradation. An SDRNFLRFamide-like peptide that exactly co-migrated with SDRNFLRFamide was also observed. The effects of TNRNFLRFamide and SDRNFLRFamide on the gastric and pyloric rhythms of the stomatogastric nervous system of the crab Cancer borealis were studied. Both peptides activated pyloric rhythms in quiescent preparations in a dose-dependent manner with a threshold between 10(−11) and 10(−10) mol l-1. Both peptides increased the pyloric rhythm frequency of preparations showing moderate activity levels and had relatively little effect on preparations that showed strong pyloric rhythms prior to peptide application. Both peptides evoked gastric mill activity in preparations without existing gastric rhythms. The activation of the gastric rhythm is associated with activation of oscillatory properties in the dorsal gastric neurone. The induction of gastric rhythms by these peptides was accompanied by switches from pyloric-timed activity to gastric-timed activity by several stomatogastric ganglion neurones. Application of these peptides provides direct experimental control of circuit modification in the stomatogastric nervous system.


2018 ◽  
Vol 36 (6) ◽  
pp. 408-414 ◽  
Author(s):  
Jia Wang ◽  
Jingjing Cui ◽  
Chen She ◽  
Dongsheng Xu ◽  
Zhiyun Zhang ◽  
...  

Objectives To compare the neural pathways associated with the tissues located at different traditional acupuncture points in the rat forehead and face using the cholera toxin B subunit (CTB) neural tracing technique. Methods After injection of CTB into the tissues at GB14, ST2 and ST6 in the rat, the neural labelling associated with each acupuncture point was revealed by fluorescent immunohistochemistry of the nervous system, including the trigeminal ganglion (TRG), cervical dorsal root ganglia (DRG), spinal cord and brain. Results The CTB labelling included sensory neurons and their transganglionic axonal terminals, as well as motor neurons. The labelled sensory neurons associated with GB14, ST2 and ST6 were distributed in both the TRG and cervical DRG, and their centrally projected axons terminated in an orderly fashion at their corresponding targets in the spinal trigeminal nucleus and cervical spinal dorsal horn. In addition, labelled motor neurons were observed in the facial motor nucleus, trigeminal motor nucleus and cervical spinal ventral horn, in which facial motor neurons projected to the tissues located at all three acupuncture points. Trigeminal motor neurons innervated both ST2 and ST6, while spinal motor neurons only correlated with ST6. Conclusions These results indicate that the tissues located at each of these three traditional acupuncture points in the rat forehead and face has its own sensory and motor connection with the nervous system in a region-specific pattern through distinct neural pathways. Understanding the neuroanatomical characteristics of acupuncture points from the peripheral nervous system to the central nervous system should help inform acupuncture point selection according to the demands of the clinical situation.


2004 ◽  
Vol 92 (4) ◽  
pp. 2312-2322 ◽  
Author(s):  
Avniel N. Shetreat-Klein ◽  
Elizabeth C. Cropper

A manipulation often used to determine whether a neuron plays a role in the generation of a motor program involves injecting current into the cell during rhythmic activity to determine whether activity is modified. We perform this type of manipulation to study the impact of afferent activity on feeding-like motor programs in Aplysia. We trigger biting-like programs and manipulate sensory neurons that have been implicated in producing the changes in activity that occur when food is ingested, i.e., when bites are converted to bite-swallows. Sensory neurons that are manipulated are the radula mechanoafferent B21 and the retraction proprioceptor B51. Data suggest that both cells are peripherally activated during radula closing/retraction when food is ingested. We found that phasic subthreshold depolarization of a single sensory neuron can significantly prolong radula closing/retraction, as determined by recording both from interneurons (e.g., B64), and motor neurons (e.g., B15 and B8). Additionally, afferent activity produces a delay in the onset of the subsequent radula opening/protraction, and increases the firing frequency of motor neurons. These are the changes in activity that are seen when food is ingested. These results add to the growing data that implicate B21 and B51 in bite to bite-swallow conversions and indicate that afferent activity is important during feeding in Aplysia.


2010 ◽  
Vol 104 (2) ◽  
pp. 654-664
Author(s):  
Debra E. Wood ◽  
Melissa Varrecchia ◽  
Michael Papernov ◽  
Denise Cook ◽  
Devon C. Crawford

Neuromodulation is well known to provide plasticity in pattern generating circuits, but few details are available concerning modulation of motor pattern coordination. We are using the crustacean stomatogastric nervous system to examine how co-expressed rhythms are modulated to regulate frequency and maintain coordination. The system produces two related motor patterns, the gastric mill rhythm that regulates protraction and retraction of the teeth and the pyloric rhythm that filters food. These rhythms have different frequencies and are controlled by distinct mechanisms, but each circuit influences the rhythm frequency of the other via identified synaptic pathways. A projection neuron, MCN1, activates distinct versions of the rhythms, and we show that hormonal dopamine concentrations modulate the MCN1 elicited rhythm frequencies. Gastric mill circuit interactions with the pyloric circuit lead to changes in pyloric rhythm frequency that depend on gastric mill rhythm phase. Dopamine increases pyloric frequency during the gastric mill rhythm retraction phase. Higher gastric mill rhythm frequencies are associated with higher pyloric rhythm frequencies during retraction. However, dopamine slows the gastric mill rhythm frequency despite the increase in pyloric frequency. Dopamine reduces pyloric circuit influences on the gastric mill rhythm and upregulates activity in a gastric mill neuron, DG. Strengthened DG activity slows the gastric mill rhythm frequency and effectively reduces pyloric circuit influences, thus changing the frequency relationship between the rhythms. Overall dopamine shifts dependence of frequency regulation from intercircuit interactions to increased reliance on intracircuit mechanisms.


1997 ◽  
Vol 200 (24) ◽  
pp. 3221-3233 ◽  
Author(s):  
A J Tierney ◽  
J Blanck ◽  
J Mercier

Whole-mount immunocytochemistry was used to map the location of FMRFamide-like peptides in the crayfish (Procambarus clarkii) stomatogastric nervous system. This system contains the pyloric and gastric mill central pattern generators, which receive modulatory inputs from projection neurons with somata located primarily in other ganglia of the stomatogastric nervous system. Our studies revealed stained somata in the commissural and esophageal ganglia. A pair of stained somata was located in the inferior ventricular nerve, and another pair of somata was located in the stomatogastric nerve where it is joined by the two superior esophageal nerves. The stomatogastric ganglion contained no stained somata, but the neuropil was brightly stained and 2-4 axons projected laterally in small nerves directly from the ganglion. These results indicate that FMRFamide or related peptides may act as neuromodulators in the crayfish stomatogastric nervous system. To test this hypothesis, we studied the effects of FMRFamide and four related peptides (DF2, NF1, F1 and LMS) on the pyloric motor pattern. DF2, NF1 and F1 all excited certain pyloric cells, especially the lateral pyloric (LP) and ventricular dilator (VD) neurons, and enhanced pyloric cycling frequency in most actively rhythmic preparations. FMRFamide had no detectable effects on pyloric cells, and LMS had inhibitory effects, causing disruption of the pyloric rhythm in actively cycling preparations and reducing tonic activity in non-rhythmic preparations.


1989 ◽  
Vol 62 (2) ◽  
pp. 571-581 ◽  
Author(s):  
P. S. Katz ◽  
R. M. Harris-Warrick

1. The gastropyloric receptor (GPR) cells, which are described in the preceding paper, are a set of proprioceptive cells in the crabs Cancer borealis and Cancer irroratus that contain serotonin (5-hydroxytryptamine, 5-HT) and choline acetyltransferase. These cells have a variety of synaptic effects on cells in the stomatogastric ganglion (STG). We used pharmacologic methods to distinguish the effects that were due to acetylcholine (ACh) from those that could be due to serotonin. 2. The GPR cells evoke excitatory postsynaptic potentials (EPSPs) in two gastric mill motor neurons [lateral and dorsal gastric (LG and DG)] in the stomatogastric ganglion. The EPSPs exhibit nicotinic pharmacology, indicating that they may be due to the release of ACh from the GPR cells. 3. A train of GPR action potentials induces plateau potential properties in the DG motor neuron. This plateau potential induction is not blocked by nicotinic or muscarinic antagonists, suggesting it might be due to serotonin released from the GPR cells. Bath-applied serotonin induces a tonic depolarization of DG with high-intensity spiking. 4. In the accompanying paper, it is shown that DG-evoked muscle contraction leads to the excitation of GPR2 through mechanical coupling of the muscles. Because GPR2 also excites DG, a positive feedback loop exists between GPR2 and DG. This reflex loop may be involved in the control of the medial tooth of the gastric mill. 5. GPR stimulation initiates or enhances rhythmic pyloric cycling. This is due at least in part to a direct enhancement of bursting in the pyloric dilator/anterior burster (PD/AB) pacemaker cell group and can outlast the period of GPR stimulation by up to 1 min. GPR-induced PD burst enhancement continues in the presence of nicotinic and muscarinic antagonists, indicating that the effect is probably not due to the release of ACh. Bath application of serotonin mimicks the neuromodulatory effect of GPR stimulation on the PD/AB group by inducing or enhancing bursting. 6. Thus the GPR cells elicit at least three different synaptic actions in the stomatogastric ganglion: 1) classical, fast nicotinic cholinergic EPSPs that may be important for reflex functions in the gastric mill; 2) noncholinergic, cycle-by-cycle plateau potential induction that might be critical for the timing and operation of the gastric mill, and 3) prolonged, noncholinergic burst enhancement in pyloric neurons that is mimicked by serotonin, lasts many cycles, and may act to assure that the pyloric central pattern generator (CPG) is activated and cycling strongly.


Sign in / Sign up

Export Citation Format

Share Document