Deactivation of One Subthalamic Nucleus Deep Brain Stimulation Device to Address Brittle Ipsilateral Dyskinesia in a Patient With Tremor-Dominant Parkinson Disease

2020 ◽  
pp. 93-96
Author(s):  
Julia Kroth ◽  
Susanne Schneider ◽  
Sergiu Groppa

A 78-year-old right-handed woman with a 10-year history of tremor-dominant Parkinson disease (PD) was recommended for bilateral deep brain stimulation (DBS) in the subthalamic nucleus (STN). The patient was implanted with bilateral omnidirectional STN DBS electrodes after intraoperative microelectrode recordings and intraoperative test stimulation. Immediately after implantation, the motor symptoms improved considerably, but 3 to 4 weeks later, a debilitating left-sided resting tremor re-emerged. Personalized programming at the right STN ameliorated the tremor, while painful dyskinesia and hemiballism of the ipsilateral right side of the body developed subsequently over the next few days. Adapting the stimulation parameters and the dopaminergic medication improved these symptoms only marginally. After turning off the left STN electrode, the dyskinesia and hemiballism disappeared completely. In the following weeks, the amperage of the right STN electrode was increased gradually to control the left-sided resting tremor. This was possible without the development of ipsilateral hyperkinesia. During the off phases of stimulation, a considerable direct improvement of hyperkinesia was noted, and the decision to turn off the left STN electrode was ultimately made.

2006 ◽  
Vol 58 (suppl_1) ◽  
pp. ONS-96-ONS-102 ◽  
Author(s):  
Ramin Amirnovin ◽  
Ziv M. Williams ◽  
G. Rees Cosgrove ◽  
Emad N. Eskandar

Abstract OBJECTIVE: Subthalamic deep brain stimulation (DBS) has rapidly become the standard surgical therapy for medically refractory Parkinson disease. However, in spite of its wide acceptance, there is considerable variability in the technical approach. This study details our technique and experience in performing microelectrode recording (MER) guided subthalamic nucleus (STN) DBS in the treatment of Parkinson disease. METHODS: Forty patients underwent surgery for the implantation of 70 STN DBS electrodes. Stereotactic localization was performed using a combination of magnetic resonance and computed tomographic imaging. We used an array of three microelectrodes, separated by 2 mm, for physiological localization of the STN. The final location was selected based on MER and macrostimulation through the DBS electrode. RESULTS: The trajectory selected for the DBS electrode had an average pass through the STN of 5.6 ± 0.4 mm on the left and 5.7 ± 0.4 mm on the right. The predicted location was used in 42% of the cases but was modified by MER in the remaining 58%. Patients were typically discharged on the second postoperative day. Eighty-five percent of patients were sent home, 13% required short-term rehabilitation, and one patient required long-term nursing services. Seven complications occurred over 4 years. Four patients suffered small hemorrhages, one patient experienced a lead migration, one developed an infection of the pulse generator, and one patient suffered from a superficial cranial infection. CONCLUSION: Simultaneous bilateral MER-guided subthalamic DBS is a relatively safe and well-tolerated procedure. MER plays an important role in optimal localization of the DBS electrodes.


2014 ◽  
Vol 26 (3) ◽  
pp. 543-550 ◽  
Author(s):  
Barbara Schmalbach ◽  
Veronika Günther ◽  
Jan Raethjen ◽  
Stefanie Wailke ◽  
Daniela Falk ◽  
...  

Spatial attention is a lateralized feature of the human brain. Whereas the role of cortical areas of the nondominant hemisphere on spatial attention has been investigated in detail, the impact of the BG, and more precisely the subthalamic nucleus, on signs and symptoms of spatial attention is not well understood. Here we used unilateral deep brain stimulation of the subthalamic nucleus to reversibly, specifically, and intraindividually modify the neuronal BG outflow and its consequences on signs and symptoms of visuospatial attention in patients suffering from Parkinson disease. We tested 13 patients with Parkinson disease and chronic deep brain stimulation in three stimulation settings: unilateral right and left deep brain stimulation of the subthalamic nucleus as well as bilateral deep brain stimulation of the subthalamic nucleus. In all three stimulation settings, the patients viewed a set of pictures while an eye-tracker system recorded eye movements. During the exploration of the visual stimuli, we analyzed the time spent in each visual hemispace, as well as the number, duration, amplitude, peak velocity, acceleration peak, and speed of saccades. In the unilateral left-sided stimulation setting, patients show a shorter ipsilateral exploration time of the extrapersonal space, whereas number, duration, and speed of saccades did not differ between the different stimulation settings. These results demonstrated reduced visuospatial attention toward the side contralateral to the right subthalamic nucleus that was not being stimulated in a unilateral left-sided stimulation. Turning on the right stimulator, the reduced visuospatial attention vanished. These results support the involvement of the subthalamic nucleus in modulating spatial attention. Therefore, the subthalamic nucleus is part of the subcortical network that subserves spatial attention.


2009 ◽  
Vol 463 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Peter Novak ◽  
Joshua A. Klemp ◽  
Larry W. Ridings ◽  
Kelly E. Lyons ◽  
Rajesh Pahwa ◽  
...  

2002 ◽  
Vol 96 (4) ◽  
pp. 666-672 ◽  
Author(s):  
Tanya Simuni ◽  
Jurg L. Jaggi ◽  
Heather Mulholland ◽  
Howard I. Hurtig ◽  
Amy Colcher ◽  
...  

Object. Palliative neurosurgery has reemerged as a valid therapy for patients with advanced Parkinson disease (PD) that is complicated by severe motor fluctuations. Despite great enthusiasm for long-term deep brain stimulation (DBS) of the subthalamic nucleus (STN), existing reports on this treatment are limited. The present study was designed to investigate the safety and efficacy of bilateral stimulation of the STN for the treatment of PD. Methods. In 12 patients with severe PD, electrodes were stereotactically implanted into the STN with the assistance of electrophysiological conformation of the target location. All patients were evaluated preoperatively during both medication-off and -on conditions, as well as postoperatively at 3, 6, and 12 months during medication-on and -off states and stimulation-on and -off conditions. Tests included assessments based on the Unified Parkinson's Disease Rating Scale (UPDRS) and timed motor tests. The stimulation effect was significant in patients who were in the medication-off state, resulting in a 47% improvement in the UPDRS Part III (Motor Examination) score at 12 months, compared with preoperative status. The benefit was stable for the duration of the follow-up period. Stimulation produced no additional benefit during the medication-on state, however, when compared with patient preoperative status. Significant improvements were made in reducing dyskinesias, fluctuations, and duration of off periods. Conclusions. This study demonstrates that DBS of the STN is an effective treatment for patients with advanced, medication-refractory PD. Deep brain stimulation of the STN produced robust improvements in motor performance in these severely disabled patients while they were in the medication-off state. Serious adverse events were common in this cohort; however, only two patients suffered permanent sequelae.


2018 ◽  
Vol 8 (4) ◽  
pp. 66 ◽  
Author(s):  
Elena Khabarova ◽  
Natalia Denisova ◽  
Aleksandr Dmitriev ◽  
Konstantin Slavin ◽  
Leo Verhagen Metman

2020 ◽  
Vol 11 ◽  
pp. 444
Author(s):  
Samir Kashyap ◽  
Rita Ceponiene ◽  
Paras Savla ◽  
Jacob Bernstein ◽  
Hammad Ghanchi ◽  
...  

Background: Tardive tremor (TT) is an underrecognized manifestation of tardive syndrome (TS). In our experience, TT is a rather common manifestation of TS, especially in a setting of treatment with aripiprazole, and is a frequent cause of referrals for the evaluation of idiopathic Parkinson disease. There are reports of successful treatment of tardive orofacial dyskinesia and dystonia with deep brain stimulation (DBS) using globus pallidus interna (GPi) as the primary target, but the literature on subthalamic nucleus (STN) DBS for tardive dyskinesia (TD) is lacking. To the best of our knowledge, there are no reports on DBS treatment of TT. Case Description: A 75-year-old right-handed female with the medical history of generalized anxiety disorder and major depressive disorder had been treated with thioridazine and citalopram from 1980 till 2010. Around 2008, she developed orolingual dyskinesia. She was started on tetrabenazine in June 2011. She continued to have tremors and developed Parkinsonian gait, both of which worsened overtime. She underwent DBS placement in the left STN in January 2017 with near-complete resolution of her tremors. She underwent right STN implantation in September 2017 with similar improvement in symptoms. Conclusion: While DBS-GPi is the preferred treatment in treating oral TD and dystonia, DBS-STN could be considered a safe and effective target in patients with predominating TT and/or tardive Parkinsonism. This patient saw a marked improvement in her symptoms after implantation of DBS electrodes, without significant relapse or recurrence in the years following implantation.


Neurosurgery ◽  
2021 ◽  
Vol 89 (Supplement_2) ◽  
pp. S143-S143
Author(s):  
Kyle T Mitchell ◽  
John R Younce ◽  
Scott A Norris ◽  
Samer D Tabbal ◽  
Joshua L Dowling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document