Shale is here again

Author(s):  
Anthony Seaton

In Shale is here again Anthony Seaton briefly explores his research project with the US Department of Energy to study the risks of shale oil production and mining.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ilayda Taneri ◽  
Nukhet Dogan ◽  
M. Hakan Berument

Purpose The purpose of this paper is to use the novel data from the primary vision to determine the main financial and economic drivers of this revolutionary shale oil production and how these drivers changed after 2016 when the US removed its oil-exporting ban. Design/methodology/approach In this paper, the authors use the vector autoregressive model to assess the dynamic relationships among the Frac Count (FSCN) from the primary vision and the set of financial/macro-economic variables and how this dynamic relationship is altered with the effects of the US export ban before and after the lifting of the export ban. Findings The empirical evidence reveals that a positive shock to New York Mercantile Exchange, Standard and Poor’s 500, rig count, West Texas Intermediate or the US ending oil stocks increase the FSCN but higher interest rates and oil production decrease the FSCN. After the US became one of the major oil producers, it removed its crude export ban in December 2015. The empirical evidence suggests that the shale oil industry gets more integrated with the financial system and becomes more efficient in its production process in the post-2016 era after the export ban was removed. Originality/value The purpose of this paper is to use the novel data from the primary vision to determine the main financial and economic drivers of this revolutionary shale oil production and how these drivers changed after 2016 when the US removed its oil-exporting ban.


2020 ◽  
pp. 104833
Author(s):  
Peter B. McMahon ◽  
Joel M. Galloway ◽  
Andrew G. Hunt ◽  
Kenneth Belitz ◽  
Bryant C. Jurgens ◽  
...  

2021 ◽  
Author(s):  
Robert Downey ◽  
Kiran Venepalli ◽  
Jim Erdle ◽  
Morgan Whitelock

Abstract The Permian Basin of west Texas is the largest and most prolific shale oil producing basin in the United States. Oil production from horizontal shale oil wells in the Permian Basin has grown from 5,000 BOPD in February, 2009 to 3.5 Million BOPD as of October, 2020, with 29,000 horizontal shale oil wells in production. The primary target for this horizontal shale oil development is the Wolfcamp shale. Oil production from these wells is characterized by high initial rates and steep declines. A few producers have begun testing EOR processes, specifically natural gas cyclic injection, or "Huff and Puff", with little information provided to date. Our objective is to introduce a novel EOR process that can greatly increase the production and recovery of oil from shale oil reservoirs, while reducing the cost per barrel of recovered oil. A superior shale oil EOR method is proposed that utilizes a triplex pump to inject a solvent liquid into the shale oil reservoir, and an efficient method to recover the injectant at the surface, for storage and reinjection. The process is designed and integrated during operation using compositional reservoir simulation in order to optimize oil recovery. Compositional simulation modeling of a Wolfcamp D horizontal producing oil well was conducted to obtain a history match on oil, gas, and water production. The matched model was then utilized to evaluate the shale oil EOR method under a variety of operating conditions. The modeling indicates that for this particular well, incremental oil production of 500% over primary EUR may be achieved in the first five years of EOR operation, and more than 700% over primary EUR after 10 years. The method, which is patented, has numerous advantages over cyclic gas injection, such as much greater oil recovery, much better economics/lower cost per barrel, lower risk of interwell communication, use of far less horsepower and fuel, shorter injection time, longer production time, smaller injection volumes, scalability, faster implementation, precludes the need for artificial lift, elimination of the need to buy and sell injectant during each cycle, ability to optimize each cycle by integration with compositional reservoir simulation modeling, and lower emissions. This superior shale oil EOR method has been modeled in the five major US shale oil plays, indicating large incremental oil recovery potential. The method is now being field tested to confirm reservoir simulation modeling projections. If implemented early in the life of a shale oil well, its application can slow the production decline rate, recover far more oil earlier and at lower cost, and extend the life of the well by several years, while precluding the need for artificial lift.


2000 ◽  
Vol 18 (2-3) ◽  
pp. 263-264 ◽  
Keyword(s):  
The Us ◽  

Non-OPEC oil reserves worldwide have an R/P ratio of 15. In the USA, the ratio is near 10; a figure stated for much of the last century. The US DOE/EIA world oil production forecasts given in Table 1 ignore the published forecasts of oil reserves. The naive statement of the position for the USA is that the presently known oil reserves will have been used by 2010. In 2010, US production is forecast to be a little less than 9 million b/d and in 2020 is forecast to be a little over 9 million b/d. The US DOE/EIA is clearly confident that there will be oil reserves available to support world oil production of 87.7 million b/d in 2005; 96.6 million b/d in 2021; 105.6 million b/d in 2015 and 15.4 million b/d in 2020. Hence real at economic world oil reserves are forecast to increase steadily through the next two decades.


Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


Sign in / Sign up

Export Citation Format

Share Document