Structure and function of the pulmonary circulation

Author(s):  
Nicholas W. Morrell

The normal pulmonary circulation distributes deoxygenated blood at low pressure and high flow to the pulmonary capillaries for the purposes of gas exchange. The structure of pulmonary blood vessels varies with their function—from large elastic conductance arteries, to small muscular arteries, to thin-walled vessels involved in gas exchange....

2020 ◽  
pp. 3691-3695
Author(s):  
Nicholas W. Morrell

The normal pulmonary circulation distributes deoxygenated blood at low pressure and high flow to the pulmonary capillaries for the purposes of gas exchange. The structure of pulmonary blood vessels varies with their function—from large elastic conductance arteries, to small muscular arteries, to thin-walled vessels involved in gas exchange. Pulmonary vascular resistance is about one-tenth of systemic vascular resistance, with the small muscular and partially muscular arteries of 50–150 µm diameter being the site of the greatest contribution to resistance. In the normal pulmonary circulation, a large increase in cardiac output causes only a small rise in mean pulmonary arterial pressure because pulmonary vascular resistance falls on exercise. Pulmonary blood flow is heterogeneous: gravity causes increased blood flow in the more dependent parts of the lung; within a horizontal region—or within an acinus—blood-flow heterogeneity is imposed by the branching pattern of the vessels.


1997 ◽  
Vol 82 (5) ◽  
pp. 1397-1405 ◽  
Author(s):  
Yuko Kitagawa ◽  
Stephan F. Van Eeden ◽  
Darlene M. Redenbach ◽  
Maleki Daya ◽  
Blair A. M. Walker ◽  
...  

Kitagawa, Yuko, Stephan F. Van Eeden, Darlene M. Redenbach, Maleki Daya, Blair A. M. Walker, Maria E. Klut, Barry R. Wiggs, and James C. Hogg. Effect of mechanical deformation on structure and function of polymorphonuclear leukocytes. J. Appl. Physiol. 82(5): 1397–1405, 1997.—The present studies were designed to test the hypothesis that mechanical deformation of polymorphonuclear leukocytes (PMN) leads to functional changes that might influence their transit in the pulmonary capillaries. Human leukocytes were passed through 5- or 3-μm-pore polycarbonate filters under controlled conditions. Morphometric analysis showed that the majority of PMN were deformed and that this deformation persisted longer after filtration through 3-μm filters than through 5-μm filters ( P < 0.05) but did not result in the cytoskeletal polarization characteristic of migrating cells. Flow cytometric studies of the filtered PMN showed that there was a transient increase in the cytosolic free Ca2+ concentration after both 3- and 5-μm filtration ( P< 0.01) with an increase in F-actin content after 3-μm filtration ( P < 0.05). AlthoughL-selectin expression on PMN was not changed by either 5- or 3-μm filtration, CD18 and CD11b were increased by 3-μm filtration ( P < 0.05). Priming of the PMN with N-formyl-methionyl-leucyl-phenylalanine (0.5 nM) before filtration resulted in an increase of CD11b by both 5 ( P < 0.05)- and 3-μm ( P < 0.01) filtration. Neither 5- nor 3-μm filtration induced hydrogen peroxide production. We conclude that mechanical deformation of PMN, similar to what occurs in the pulmonary microvessels, induces both structural and functional changes in the cells, which might influence their passage through the pulmonary capillary bed.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2158 ◽  
Author(s):  
Ivana Gadjanski

Articular cartilage (AC) is a seemingly simple tissue that has only one type of constituting cell and no blood vessels and nerves. In the early days of tissue engineering, cartilage appeared to be an easy and promising target for reconstruction and this was especially motivating because of widespread AC pathologies such as osteoarthritis and frequent sports-induced injuries. However, AC has proven to be anything but simple. Recreating the varying properties of its zonal structure is a challenge that has not yet been fully answered. This caused the shift in tissue engineering strategies toward bioinspired or biomimetic approaches that attempt to mimic and simulate as much as possible the structure and function of the native tissues. Hydrogels, particularly gradient hydrogels, have shown great potential as components of the biomimetic engineering of the cartilaginous tissue.


1980 ◽  
Vol 20 (2) ◽  
pp. 477-484 ◽  
Author(s):  
HERMANN RAHN ◽  
AMOS AR

Sign in / Sign up

Export Citation Format

Share Document