scholarly journals Rescue of Hematopoietic Stem Cells Following High-Dose Radiation Injury Using Ex Vivo Culture on Endothelial Monolayers

2002 ◽  
Vol 167 (suppl_1) ◽  
pp. 74-77 ◽  
Author(s):  
John P. Chute ◽  
William Clark ◽  
Abha Saini ◽  
Mark Wells ◽  
David Harlan
Blood ◽  
2012 ◽  
Vol 119 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Terumasa Umemoto ◽  
Masayuki Yamato ◽  
Jun Ishihara ◽  
Yoshiko Shiratsuchi ◽  
Mika Utsumi ◽  
...  

AbstractThroughout life, one's blood supply depends on sustained division of hematopoietic stem cells (HSCs) for self-renewal and differentiation. Within the bone marrow microenvironment, an adhesion-dependent or -independent niche system regulates HSC function. Here we show that a novel adhesion-dependent mechanism via integrin-β3 signaling contributes to HSC maintenance. Specific ligation of β3-integrin on HSCs using an antibody or extracellular matrix protein prevented loss of long-term repopulating (LTR) activity during ex vivo culture. The actions required activation of αvβ3-integrin “inside-out” signaling, which is dependent on thrombopoietin (TPO), an essential cytokine for activation of dormant HSCs. Subsequent “outside-in” signaling via phosphorylation of Tyr747 in the β3-subunit cytoplasmic domain was indispensable for TPO-dependent, but not stem cell factor-dependent, LTR activity in HSCs in vivo. This was accompanied with enhanced expression of Vps72, Mll1, and Runx1, 3 factors known to be critical for maintaining HSC activity. Thus, our findings demonstrate a mechanistic link between β3-integrin and TPO in HSCs, which may contribute to maintenance of LTR activity in vivo as well as during ex vivo culture.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1686-1686
Author(s):  
Hideyuki Oguro ◽  
Atsushi Iwama ◽  
Hiromitsu Nakauchi

Abstract The Polycomb group (PcG) proteins form multiprotein complexes that play an important role in the maintenance of transcriptional repression of target genes. Loss-of-function analyses show abnormal hematopoiesis in mice deficient for PcG genes including Bmi-1, Mph-1/Rae28, M33, Mel-18, and Eed, suggesting involvement of PcG complexes in the regulation of hematopoiesis. Among them, Bmi-1 has been implicated in the maintenance of hematopoietic and leukemic stem cells. In this study, detailed RT-PCR analysis of mouse hematopoietic cells revealed that all PcG genes encoding components of the Bmi-1-containing complex, such as Bmi-1, Mph1/Rae28, M33, and Mel-18 were highly expressed in CD34−c-Kit+Sca-1+Lin− (CD34−KSL) hematopoietic stem cells (HSCs) and down-regulated during differentiation in the bone marrow. These expression profiles support the idea of positive regulation of HSC self-renewal by the Bmi-1-containing complex. To better understand the role of each component of the PcG complex in HSC and the impact of forced expression of PcG genes on HSC self-renewal, we performed retroviral transduction of Bmi1, Mph1/Rae28, or M33 in HSCs followed by ex vivo culture. After 14-day culture, Bmi-1-transduced but not Mph1/Rae28-transduced cells contained numerous high proliferative potential-colony forming cells (HPP-CFCs), and presented an 80-fold expansion of colony-forming unit-neutrophil/macrophage/Erythroblast/Megakaryocyte (CFU-nmEM) compared to freshly isolated CD34−KSL cells. This effect of Bmi-1 was comparable to that of HoxB4, a well-known HSC activator. In contrast, forced expression of M33 reduced proliferative activity and caused accelerated differentiation into macrophages, leaving no HPP-CFCs after 14 days of ex vivo culture. To determine the mechanism that leads to the drastic expansion of CFU-nmEM, we employed a paired daughter cell assay to see if overexpression of Bmi-1 promotes symmetric HSC division in vitro. Forced expression of Bmi-1 significantly promoted symmetrical cell division of daughter cells, suggesting that Bmi-1 contributes to CFU-nmEM expansion by promoting self-renewal of HSCs. Furthermore, we performed competitive repopulation assays using transduced HSCs cultured ex vivo for 10 days. After 3 months, Bmi-1-transduced HSCs manifested a 35-fold higher repopulation unit (RU) compared with GFP controls and retained full differentiation capacity along myeloid and lymphoid lineages. As expected from in vitro data, HSCs transduced with M33 did not contribute to repopulation at all. In ex vivo culture, expression of both p16INK4a and p19ARF were up-regulated. p16INK4aand p19ARF are known target genes negatively regulated by Bmi-1, and were completely repressed by transducing HSCs with Bmi-1. Therefore, we next examined the involvement of p19ARF in HSC regulation by Bmi-1 using p19ARF-deficient and Bmi-1 and p19ARF-doubly deficient mice. Although bone marrow repopulating activity of p19ARF-deficient HSCs was comparable to that of wild type HSCs, loss of p19ARF expression partially rescued the defective hematopoietic phenotypes of Bmi-1-deficient mice. In addition, transduction of Bmi-1 into p19ARF-deficient HSCs again enhanced repopulating capacity compared with p19ARF-deficient GFP control cells, indicating the existence of additional targets for Bmi-1 in HSCs. Our findings suggest that the level of Bmi-1 is a critical determinant for self-renewal of HSC and demonstrate that Bmi-1 is a novel target for therapeutic manipulation of HSCs.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5803-5803
Author(s):  
Abisha Crystal C ◽  
Saravanabhavan Thangavel ◽  
Shaji Ramachandran Velayudhan ◽  
Alok Srivastava ◽  
Aneesha Nath ◽  
...  

Abstract Genome editing of Hematopoietic stem Cells has revolutionized the treatment strategies for genetic disorders. Despite this, it still remains a great challenge as hematopoietic stem cells tend to lose its stem-ness during the ex vivo culture and gene editing process. The need for large dose of CD34+ HSPCs for manipulation makes it a seemingly difficult strategy. Recent works suggest that the potential effects of small molecules in expanding cord blood HSPCs ex vivo promoting self-renewal and delaying differentiation. We screened several reported small molecules to identify a condition that promotes the expansion of adult HSPCs for gene manipulation process. The mobilized Peripheral blood HSPCs are purified and cultured with a cytokine cocktail. Along with the cytokine cocktail, we tested several small molecules and in different combinations. Expression of cell surface receptors were analysed by FACS after 12 days of ex vivo culture. Our screening identified a unique culture condition that expanded the primitive stem cell population (CD34+/CD133+/CD90+cells) along with the early progenitors (CD34+/CD133+) and the progenitors (CD34+). Our culture conditions expanded the primitive cells by 20 folds compared to the mock treated cells. Our treatment release experiments suggested that the expansion is due to our culture conditions and are reversible.The colony forming cell (CFC) assay showed about 30 fold increase in the numbers of multilineage colony forming cell (CFU-GEMM) thereby ensuring the proliferation and differentiation capacity of expanded HSPCs. Their differentiation ability was also confirmed by ex vivo differentiation into Megakaryocytes. Our treatment conditions reduced the apoptosis rate during the ex vivo culture and improved their cell migration response towards SDF. The reduced reactive oxygen species levels and increased CXCR4 expression were observed in our expanded HSPCs and these might be the possible reasons for the low apoptosis and better cell migration respectively. Disclosures No relevant conflicts of interest to declare.


Haematologica ◽  
2018 ◽  
Vol 103 (10) ◽  
pp. 1604-1615 ◽  
Author(s):  
Véronique Lapostolle ◽  
Jean Chevaleyre ◽  
Pascale Duchez ◽  
Laura Rodriguez ◽  
Marija Vlaski-Lafarge ◽  
...  

Author(s):  
Prasetyadi Prasetyadi

Hematopoietic stem cells (HSCs) usage has numerous potential benefits for basic and clinical research.  Growing interest in this field is caused by possible HSCs application   to cure   various   hematologic   diseases, malignancies, immunodeficiency diseases, and inborn errors of metabolism.  Although the demand of HSCs is increasing, ex vivo culture of HSCs has various medium compositions. This article focuses on HSCs’ culture medium optimation in different medium supplements, which might overcome non-optimal HSCs culture results. Literature searching was conducted in PubMed and google scholar database. Paper selection processes were done by author separately and studies which met the eligible criteria were included in this review. A total of 53 relevant articles were identified and 11 articles that met the eligible criteria were included in this review. There are two main types of supplement, cytokines and non-cytokines.  In cytokines addition, 7 studies generally show that the supplement support HSCs expansion.  The addition of non-cytokines supplements has more diverse   result in studies.   Positive   results   with various   effectivity   in CD34+ expansion were shown in 3 studies, while one study shows a negative result. Medium supplementation must be explored more to find best substances which can optimize   HSCs   culture.   Further   research   using   non-cytokines   substance   shall   be conducted regarding its various effect and might give us a big opportunity to find an optimal condition for HSCs culture.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1607-1607
Author(s):  
Shunsuke Nakamura ◽  
Atsushi Iwama

Abstract Abstract 1607 The polycomb group (PcG) proteins form chromatin-modifying complexes that implement transcriptional silencing. There are two major PcG complexes, polycomb repressive complex (PRC) 1 and PRC2. PRC1 ubiquitylates histone H2A at lysine 119 and PRC2 trimethylates lysine 27 of histone H3. Among PcG proteins, Bmi1, a core component of PRC1, plays an essential role in the self-renewal and maintenance of various kinds of stem cells including hematopoietic stem cells (HSCs), neural stem cells, and leukemic stem cells. We previously reported that forced expression of Bmi1 using a Bmi1 retrovirus promotes symmetrical cell division of HSCs, resulting in a marked ex vivo expansion of multipotent progenitors and an enhancement of repopulating capacity of HSCs in vivo. However, the impact of overexpression of Bmi1 in HSCs remains to be precisely addressed. To this end, we generated a mouse line where Bmi1 can be conditionally overexpressed under the control of the Rosa promoter in a tissue-specific fashion by the Cre-LoxP system. We crossed the mice to Tie2-Cre mice (Tie2-Cre; Rosa-Bmi1fl/+) and induced overexpression of Bmi1 in hematopoietic cells in vivo. Real-time PCR analysis demonstrated that expression of Bmi1 inpurified bone marrow (BM) c-Kit+Sca-1+Lineage-marker- (KSL) cells was 6-fold higher in Tie2-Cre; Rosa-Bmi1fl/+ mice than control Tie2-Cre mice mice. Overexpression of Bmi1 did not significantly affect steady state hematopoiesis. The number of HSCs and progenitors (multipotent progenitors, CMPs, GMP, MEPs, and CLPs) and lineage composition (myeloid cells, B cells, and T cells) in BM of Tie2-Cre; Rosa-Bmi1fl/+ mice was not significantly changed compared to those in control mice. We then performed serial transplantation assay. The repopulating capacity of Tie2-Cre; Rosa-Bmi1fl/+ BM cells was comparable to those of the control cells in primary recipients. However, Tie2-Cre; Rosa-Bmi1fl/+ cells retained higher repopulating capacity during serial transplantation compared to those of the control cells. Moreover, ex vivo culture of Tie2-Cre; Rosa-Bmi1fl/+ HSCs for 10 days contained approximately 2-fold more high proliferative potential colony-forming cells (HPP-CFCs; colony diameter>1mm) and colony-forming unit-neutrophil/macrophage/erythroblast/megakaryocyte (CFU-nmEM) which retain multi-lineage differentiation potential along myeloid lineage than the control. Of note, cells in ex vivo culture of Tie2-Cre; Rosa-Bmi1fl/+ HSCs exhibited significantly augmented repopulating capacity in recipient mice and we are now engaged in competitive repopulation unit (CRU) assays to determine the net HSC expansion by overexpression of Bmi1 during ex vivo culture. These results indicate that overexpression of Bmi1 confers stress resistance to HSCs during ex vivo culture and serial transplantation. Our findings also provide Bmi1 as a potential target for efficient manipulation of HSCs ex vivo. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document