A systematic review on distribution and antifungal resistance pattern of Candida species in the Indian population

2021 ◽  
Author(s):  
Rashi Verma ◽  
Dibyabhaba Pradhan ◽  
Ziaul Hasan ◽  
Harpreet Singh ◽  
Arun Kumar Jain ◽  
...  

Abstract The emergence of antifungal drug resistance in Candida species has led to increased morbidity and mortality in immunocompromised patients. Understanding species distribution and antifungal drug resistance patterns is an essential step for novel drug development. A systematic review was performed addressing this challenge in India with keywords inclusive of ‘Candida’, ‘Antifungal Drug Resistance’, ‘Candidemia’, ‘Candidiasis’ and ‘India’. A total of 106 studies (January 1978-March 2020) from 20 Indian states were included. Of over 11,429 isolates, Candida albicans was the major species accounting for 37.95% of total isolates followed by C. tropicalis (29.40%), C. glabrata (11.68%) and C. parapsilosis (8.36%). Rates of antifungal resistance were highest in non-albicans Candida (NAC) species - C. haemuloni (47.16%), C. krusei (28.99%), C. lipolytica (28.89%) and C. glabrata (20.69%). Approximately 10.34% isolates of C. albicans were observed to be drug-resistant. Candida species were frequently resistant to certain azoles (ketoconazole-22.2%, miconazole–22.1% and fluconazole–21.8%). In conclusion, the present systematic review illustrates the overall distribution and antifungal resistance pattern of Candida species among the Indian population that could be helpful in the future for the formation of treatment recommendations for the region but also elsewhere.

2013 ◽  
Vol 10 (4) ◽  
Author(s):  
Basavraj Nagoba ◽  
Nasira Sheikh ◽  
Vilas Jahagirdar ◽  
Sarita Kothadia

F1000Research ◽  
2017 ◽  
Vol 5 ◽  
pp. 2832 ◽  
Author(s):  
Charlene Wilma Joyce Africa ◽  
Pedro Miguel dos Santos Abrantes

Background:Candidainfections are responsible for increased morbidity and mortality rates in at-risk patients, especially in developing countries where there is limited access to antifungal drugs and a high burden of HIV co-infection. Objectives:This study aimed to identify antifungal drug resistance patterns within the subcontinent of Africa. Methods: A literature search was conducted on published studies that employed antifungal susceptibility testing on clinicalCandidaisolates from sub-Saharan African countries using Pubmed and Google Scholar. Results: A total of 21 studies from 8 countries constituted this review. Only studies conducted in sub-Saharan Africa and employing antifungal drug susceptibility testing were included. Regional differences inCandidaspecies prevalence and resistance patterns were identified. Discussion: The outcomes of this review highlight the need for a revision of antifungal therapy guidelines in regions most affected byCandidadrug resistance.  Better controls in antimicrobial drug distribution and the implementation of regional antimicrobial susceptibility surveillance programmes are required in order to reduce the highCandidadrug resistance levels seen to be emerging in sub-Saharan Africa.


2014 ◽  
Vol 2 (4) ◽  
pp. 254-259 ◽  
Author(s):  
Giulia Morace ◽  
Federica Perdoni ◽  
Elisa Borghi

Author(s):  
Lakshmi Krishnasamy ◽  
Sharanya Krishnakumar ◽  
Govindasamy Kumaramanickavel ◽  
Chitralekha Saikumar

2021 ◽  
Vol 22 ◽  
Author(s):  
Sweety Dahiya ◽  
Namita Sharma ◽  
Aruna Punia ◽  
Pooja Choudhary ◽  
Prity Gulia ◽  
...  

: Fungal infections have shown an upsurge in recent decades, mainly because of the increasing number of immunocompromised patients, and the occurrence of invasive candidiasis is found to be 7-15 folds greater than that of invasive aspergillosis. The genus Candida comprises of more than 150 distinct species; however, only a few of them are found to be pathogenic to humans. Mortality rates of Candida species are found to be around 45%, and the reasons for this intensified mortality are inefficient diagnostic techniques and unfitting initial treatment strategies. There are only a few antifungal drug classes that are employed for the remedy of invasive fungal infections, including azoles, polyenes, echinocandins, and pyrimidine analogs. During the last 2-3 decades, the usage of antifungal drugs has increased several folds, due to which the reports of escalating antifungal drug resistance have also been recorded. The resistance is mostly to the triazole-based compounds. Due to antifungal drug resistance, the success rates of treatment have been reduced and major changes have been observed in the frequency of fungal infections. In this review, we have summarized the major molecular mechanisms for the development of antifungal drug resistance.


2010 ◽  
Vol 12 (6) ◽  
pp. 437-443 ◽  
Author(s):  
Maurizio Sanguinetti ◽  
Patrizia Posteraro ◽  
Brunella Posteraro

2021 ◽  
Author(s):  
Estela Ruiz-Baca ◽  
Rosa Isela Arredondo-Sánchez ◽  
Karina Corral-Pérez ◽  
Angélica López-Rodríguez ◽  
Iván Meneses-Morales ◽  
...  

Invasive Candidiasis (IC) presents a global mortality rate greater than 40%, occupying the fourth place worldwide as the most frequent opportunistic nosocomial disease. Although the genus Candida consists of around 200 species, only 20 are reported as etiological agents of IC, being Candida albicans the most frequent causal agent. Even when there is a broad range of antifungals drugs for Candida infections, azoles, polyenes, and echinocandins are considered among the most effective treatment. However, there is some incidence for antifungal resistance among some Candida strains, limiting treatment options. Several molecular mechanisms with antifungal agents have been reported for C. albicans where insertions, deletions, and point mutations in genes codifying target proteins are frequently related to the antifungal drug resistance. Furthermore, gene overexpression is also frequently associated to antifungal resistance as well as an increase in the activity of proteins that reduce oxidative damage. This chapter summarizes the main molecular mechanisms to C. albicans antifungal drug resistance, besides offering an overview of new antifungal agents and new antifungal targets to combat fungal infections.


Sign in / Sign up

Export Citation Format

Share Document