Echinocandin Antifungal Drug Resistance in Candida Species: A Cause for Concern?

2010 ◽  
Vol 12 (6) ◽  
pp. 437-443 ◽  
Author(s):  
Maurizio Sanguinetti ◽  
Patrizia Posteraro ◽  
Brunella Posteraro
2013 ◽  
Vol 10 (4) ◽  
Author(s):  
Basavraj Nagoba ◽  
Nasira Sheikh ◽  
Vilas Jahagirdar ◽  
Sarita Kothadia

2021 ◽  
Author(s):  
Rashi Verma ◽  
Dibyabhaba Pradhan ◽  
Ziaul Hasan ◽  
Harpreet Singh ◽  
Arun Kumar Jain ◽  
...  

Abstract The emergence of antifungal drug resistance in Candida species has led to increased morbidity and mortality in immunocompromised patients. Understanding species distribution and antifungal drug resistance patterns is an essential step for novel drug development. A systematic review was performed addressing this challenge in India with keywords inclusive of ‘Candida’, ‘Antifungal Drug Resistance’, ‘Candidemia’, ‘Candidiasis’ and ‘India’. A total of 106 studies (January 1978-March 2020) from 20 Indian states were included. Of over 11,429 isolates, Candida albicans was the major species accounting for 37.95% of total isolates followed by C. tropicalis (29.40%), C. glabrata (11.68%) and C. parapsilosis (8.36%). Rates of antifungal resistance were highest in non-albicans Candida (NAC) species - C. haemuloni (47.16%), C. krusei (28.99%), C. lipolytica (28.89%) and C. glabrata (20.69%). Approximately 10.34% isolates of C. albicans were observed to be drug-resistant. Candida species were frequently resistant to certain azoles (ketoconazole-22.2%, miconazole–22.1% and fluconazole–21.8%). In conclusion, the present systematic review illustrates the overall distribution and antifungal resistance pattern of Candida species among the Indian population that could be helpful in the future for the formation of treatment recommendations for the region but also elsewhere.


2014 ◽  
Vol 2 (4) ◽  
pp. 254-259 ◽  
Author(s):  
Giulia Morace ◽  
Federica Perdoni ◽  
Elisa Borghi

Author(s):  
Lakshmi Krishnasamy ◽  
Sharanya Krishnakumar ◽  
Govindasamy Kumaramanickavel ◽  
Chitralekha Saikumar

2021 ◽  
Vol 22 ◽  
Author(s):  
Sweety Dahiya ◽  
Namita Sharma ◽  
Aruna Punia ◽  
Pooja Choudhary ◽  
Prity Gulia ◽  
...  

: Fungal infections have shown an upsurge in recent decades, mainly because of the increasing number of immunocompromised patients, and the occurrence of invasive candidiasis is found to be 7-15 folds greater than that of invasive aspergillosis. The genus Candida comprises of more than 150 distinct species; however, only a few of them are found to be pathogenic to humans. Mortality rates of Candida species are found to be around 45%, and the reasons for this intensified mortality are inefficient diagnostic techniques and unfitting initial treatment strategies. There are only a few antifungal drug classes that are employed for the remedy of invasive fungal infections, including azoles, polyenes, echinocandins, and pyrimidine analogs. During the last 2-3 decades, the usage of antifungal drugs has increased several folds, due to which the reports of escalating antifungal drug resistance have also been recorded. The resistance is mostly to the triazole-based compounds. Due to antifungal drug resistance, the success rates of treatment have been reduced and major changes have been observed in the frequency of fungal infections. In this review, we have summarized the major molecular mechanisms for the development of antifungal drug resistance.


2019 ◽  
Vol 5 (1) ◽  
pp. 17 ◽  
Author(s):  
Jehoshua Sharma ◽  
Sierra Rosiana ◽  
Iqra Razzaq ◽  
Rebecca Shapiro

Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis—a key virulence trait—is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.


Sign in / Sign up

Export Citation Format

Share Document