Performance of the new ID-fungi plate using two types of reference libraries (Bruker and MSI) to identify fungi with the Bruker MALDI Biotyper

2020 ◽  
Vol 58 (7) ◽  
pp. 946-957 ◽  
Author(s):  
Laura Heireman ◽  
Sofie Patteet ◽  
Sophia Steyaert

Abstract During the last decade, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the diagnosis of fungal infections. Recently, a new Conidia ID-fungi plate (IDFP) medium was introduced to facilitate growth and sampling of fungi. This study aimed to evaluate the IDFP for fungal MALDI-TOF MS identification by comparison with a standard fungal growth medium using two reference libraries. A total of 75 filamentous fungal isolates (including 32 dermatophytes) were inoculated on IDFP and Sabouraud-gentamicin-chloramphenicol (SGC) agar and identified by MALDI-TOF MS using formic acid/acetonitrile extraction. Both the commercially available Bruker library (version 2.0) and the public available MSI web application (version 2018) were applied. For 15% of the isolates, a faster growth was noticed on IDFP compared to SGC. IDFP enhanced the performance of fungal identification compared to SGC for both MSI (increase of 16% identifications to genus and 5% to species level) and Bruker library (increase of 22% identifications to genus and 8% to species level). In total, only 73% of the tested isolates were present in the Bruker library compared to 92% for MSI library. No significant difference (P = 0.46) in MALDI score between IDFP and SGC was observed for the MSI library, but scores were significantly (P = 0.03) higher for IDFP when using Bruker library, potentially explained by the prevention of agar contamination by using IDFP since the Bruker database was created from liquid media. IDFP is a promising alternative growth medium for MALDI-TOF MS fungal identification which would strongly benefit from optimizing the Bruker reference library.

2021 ◽  
Author(s):  
Bing Ma ◽  
Yunqi Tian ◽  
Yungang Han ◽  
Lifang Ban ◽  
Junwen Yang ◽  
...  

ABSTRACTNocardia is an important cause of clinically invasive disease, but for most clinical laboratories, identification of these isolates to the species level is challenging. Recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely used for identification of most bacterial and fungal isolates. In this multicenter study, we evaluated the identification of Nocardia isolates using Autof MS1000 and Bruker Biotyper. A total of 86 non-duplicate Nocardia isolates from 7 hospital laboratories were evaluated. Further, we carried out sequence analysis of 16S rRNA, gyrB, secA1, hsp65, and rpoB genes as a reference method for Nocardia species identification. The 86 isolates were directly spotted on the target plate and plate protein extraction was performed. Data were analyzed by SPSS 19.0. In total, 72 (83.7%) strains (score ≥ 9.0) and 70 (81.4%) strains (score ≥ 2.0) were correctly identified by the Autof MS1000 and Bruker Biotyper systems, respectively, at the species level. There was no significant difference (P > 0.05) between the two systems using the same protein extraction method. In conclusion, the Autof MS 1000 and Bruker MALDI-TOF systems showed no difference in identification of Nocardia spp. to the species level and could meet the most important clinical requirement for species identification.


2020 ◽  
Vol 8 (9) ◽  
pp. 1362
Author(s):  
Juan C. Gómez-Velásquez ◽  
Natalia Loaiza-Díaz ◽  
Gilma Norela Hernández ◽  
Nelson Lima ◽  
Ana C. Mesa-Arango

Identification of filamentous fungi by conventional phenotypic methods are time-consuming, and a correct identification at the species level is prone to errors. Therefore, a more accurate and faster time-to-results, and cost-effective technique, is required, such as the Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). In this study, we describe the development of an in-house spectra library for the identification of filamentous fungi frequently isolated from patients with infections. An in-house spectra library was constructed using 14 reference strains grown in solid medium. Clinical isolates were identified either by the in-house spectra library or the Biotyper commercial library from Bruker Daltonics. Fungal identification was carried following the Biotyper’s established scores: ≤1.699: not reliably identified (NRI); 1.700–1.999: genus-level; ≥2.000: species-level. Clinical isolates were identified, with the in-house library, at species- and genus-level at 88.70% (55) and 3.22% (2), respectively. While 4.80% (3) was NRI and 3.22% (2) was discrepant concerning sequencing. On the contrary, identification up to species and genus-level with the commercial library was 44.44% (16) and 22.22% (8), respectively. NRI and the discrepancy was 30.55% (11) and 2.77% (1), respectively. For the reaming 26 isolates, 16 from Neoscytalidium dimidiatum and 10 from Sporothrix spp., respectively, the absence of spectrum and the specific spectra within the Sporothrix complex in the commercial library resulted in the inability to obtain an identification. In conclusion, the current results advocate the importance that each clinical microbiological laboratory needs to develop an ad hoc library associated with the MALDI-TOF MS fungal identification to overcome the limitations of the available commercial libraries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Magdalena Florek ◽  
Urszula Nawrot ◽  
Agnieszka Korzeniowska-Kowal ◽  
Katarzyna Włodarczyk ◽  
Anna Wzorek ◽  
...  

AbstractFungi belonging to the Cryptococcus neoformans/C. gattii species complex (CNGSC) are pathogens causing severe infections in humans and animals, that for humans may result in a mortality rate ranging up to 70%. The CNGSC is divided into eight major molecular types, that may differ in their virulence and susceptibility. In order to fully understand the epidemiology of cryptococcosis, it is important to study the world distribution and population structure of these pathogens. The present study is the first presenting a population of strains isolated in Poland and one of the few using a multi-species animal group as a source of the specimen. The pathogen was present in 2.375% of the tested animals. The URA5-RFLP and MALDI-TOF MS analyses have revealed that the population consisted exclusively of C. neoformans strains, with a predominance of major molecular type VNIV (C. neoformans var. neoformans). The MALDI-TOF MS was used to perform the CNGSC strains identification on both the species and sub-species level. Despite the fact that the animals providing the specimens were not treated with 5-fluorocytosine, around 10% of the tested population presented MIC values exceeding 64 mg/L, indicating the existence of the 5-fluorocytosine-resistant strains in the environment.


2019 ◽  
Vol 57 (11) ◽  
Author(s):  
Matthew C. Canver ◽  
Tsigereda Tekle ◽  
Samantha T. Compton ◽  
Katrina Callan ◽  
Eileen M. Burd ◽  
...  

ABSTRACT The Staphylococcus intermedius group (SIG) is a collection of coagulase-positive staphylococci consisting of four distinct species, namely, Staphylococcus cornubiensis, Staphylococcus delphini, Staphylococcus intermedius, and Staphylococcus pseudintermedius. SIG members are animal pathogens and rare causes of human infection. Accurate identification of S. pseudintermedius has important implications for interpretation of antimicrobial susceptibility testing data and may be important for other members of the group. Therefore, we sought to evaluate the performance of five commercially available identification platforms with 21 S. delphini isolates obtained from a variety of animal and geographic sources. Here, we show that automated biochemical platforms were unable to identify S. delphini to the species level, a function of its omission from their databases, but could identify isolates to the SIG level with various degrees of success. However, all automated systems misidentified at least one isolate as Staphylococcus aureus. One matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system was able to identify S. delphini to the species level, suggesting that MALDI-TOF MS is the best option for distinguishing members of the SIG. With the exception of S. pseudintermedius, it is unclear if other SIG members should be routinely identified to the species level; however, as our understanding of their role in animal and human diseases increases, it may be necessary and important to do so.


2014 ◽  
Vol 63 (9) ◽  
pp. 1143-1147 ◽  
Author(s):  
Katherine Woods ◽  
David Beighton ◽  
John L. Klein

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) provides rapid, accurate and cost-effective identification of a range of bacteria and is rapidly changing the face of routine diagnostic microbiology. However, certain groups of bacteria, for example streptococci (in particular viridans or non-haemolytic streptococci), are less reliably identified by this method. We studied the performance of MALDI-TOF MS for identification of the ‘Streptococcus anginosus group’ (SAG) to species level. In total, 116 stored bacteraemia isolates identified by conventional methods as belonging to the SAG were analysed by MALDI-TOF MS. Partial 16S rRNA gene sequencing, supplemented with sialidase activity testing, was performed on all isolates to provide ‘gold standard’ identification against which to compare MALDI-TOF MS performance. Overall, 100 % of isolates were correctly identified to the genus level and 93.1 % to the species level by MALDI-TOF MS. However, only 77.6 % were correctly identified to the genus level and 59.5 % to the species level by a MALDI-TOF MS direct transfer method alone. Use of a rapid in situ extraction method significantly improved identification rates when compared with the direct transfer method (P<0.001). We recommend routine use of this method to reduce the number of time-consuming full extractions required for identification of this group of bacteria by MALDI-TOF MS in the routine diagnostic laboratory. Only 22 % (1/9) of Streptococcus intermedius isolates were reliably identified by MALDI-TOF MS to the species level, even after full extraction. MALDI-TOF MS reliably identifies S. anginosus and Streptococcus constellatus to the species level but does not reliably identify S. intermedius.


2016 ◽  
Vol 10 (1) ◽  
pp. 202-208 ◽  
Author(s):  
Marisa Almuzara ◽  
Claudia Barberis ◽  
Viviana Rojas Velázquez ◽  
Maria Soledad Ramirez ◽  
Angela Famiglietti ◽  
...  

Objective:To evaluate the performance of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) by using 190 Catalase-negative Gram-Positive Cocci (GPC) clinical isolates.Methods:All isolates were identified by conventional phenotypic tests following the proposed scheme by Ruoff and Christensen and MALDI-TOF MS (Bruker Daltonics, BD, Bremen, Germany). Two different extraction methods (direct transfer formic acid method on spot and ethanol formic acid extraction method) and different cut-offs for genus/specie level identification were used. The score cut-offs recommended by the manufacturer (≥ 2.000 for species-level, 1.700 to 1.999 for genus level and <1.700 no reliable identification) and lower cut-off scores (≥1.500 for genus level, ≥ 1.700 for species-level and score <1.500 no reliable identification) were considered for identification. A minimum difference of 10% between the top and next closest score was required for a different genus or species.MALDI-TOF MS identification was considered correct when the result obtained from MS database agreed with the phenotypic identification result.When both methods gave discordant results, the 16S rDNA orsodAgenes sequencing was considered as the gold standard identification method. The results obtained by MS concordant with genes sequencing, although discordant with conventional phenotyping, were considered correct. MS results discordant with 16S orsodA identification were considered incorrect.Results:Using the score cut-offs recommended by the manufacturer, 97.37% and 81.05% were correctly identified to genus and species level, respectively. On the other hand, using lower cut-off scores for identification, 97.89% and 94.21% isolates were correctly identified to genus and species level respectively by MALDI-TOF MS and no significant differences between the results obtained with two extraction methods were obtained.Conclusion:The results obtained suggest that MALDI-TOF MS has the potential of being an accurate tool for Catalase-negative GPC identification even for those species with difficult diagnosis asHelcococcus,Abiotrophia,Granulicatella, among others. Nevertheless, expansion of the library, especially including more strains with different spectra on the same species might overcome potential “intraspecies” variability problems. Moreover, a decrease of the identification scores for species and genus-level identification must be considered since it may improve the MALDI-TOF MS accuracy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Keyi Yu ◽  
Zhenzhou Huang ◽  
Ying Li ◽  
Qingbo Fu ◽  
Lirong Lin ◽  
...  

Shewanella species are widely distributed in the aquatic environment and aquatic organisms. They are opportunistic human pathogens with increasing clinical infections reported in recent years. However, there is a lack of a rapid and accurate method to identify Shewanella species. We evaluated here matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid identification of Shewanella. A peptide mass reference spectra (PMRS) database was constructed for the type strains of 36 Shewanella species. The main spectrum projection (MSP) cluster dendrogram showed that the type strains of Shewanella species can be effectively distinguished according to the different MS fingerprinting. The PMRS database was validated using 125 Shewanella test strains isolated from various sources and periods; 92.8% (n = 116) of the strains were correctly identified at the species level, compared with the results of multilocus sequence analysis (MLSA), which was previously shown to be a method for identifying Shewanella at the species level. The misidentified strains (n = 9) by MALDI-TOF MS involved five species of two groups, i.e., Shewanella algae–Shewanella chilikensis–Shewanella indica and Shewanella seohaensis–Shewanella xiamenensis. We then identified and defined species-specific biomarker peaks of the 36 species using the type strains and validated these selected biomarkers using 125 test strains. Our study demonstrated that MALDI-TOF MS was a reliable and powerful tool for the rapid identification of Shewanella strains at the species level.


Author(s):  
Cledir Santos ◽  
Paula Galeano ◽  
Reginaldo Lima Neto ◽  
Manoel Marques Evangelista Oliveira ◽  
Nelson Lima

Abstract Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is now used as a routine technique for the fast and reliable identification of fungi at the species level and, currently, it represents an important phenotypic methodology based on proteomic profiles. The main limitations to MALDI-TOF MS for fungal identification are related to sample quality (e.g. quality of biological material such as rigidity or pigmentation of cell walls), sample preparation (e.g. the myriad of sample preparation methodologies that deliver different data sets to different MALDI-TOF MS databases) and the databases themselves (e.g. the 'black-box' commercial databases). This chapter presents an overview and discussion of the use of MALDI-TOF MS for fungal identification. The major known limitations of the technique for fungal taxonomy, and how to overcome these, are also discussed.


2018 ◽  
Vol 57 (6) ◽  
pp. 694-702
Author(s):  
Juliane Schneider ◽  
Tilo Heydel ◽  
Michael Pees ◽  
Wieland Schrödl ◽  
Volker Schmidt

Abstract Biotyper analysis of Nannizziopsis guarroi, a fatal fungal pathogen in lizards, was described recently. Hypocrealean fungal infections in captive reptiles appear with an increasing frequency during the last decade. Therefore, the aim of this study was to proof Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) as diagnostic tool for the identification of reptile pathogenic hypocrealean fungi. Ten fungal isolates obtained from nine reptiles with fungal glossitis, disseminated visceral mycosis, pneumomycosis, and fungal keratitis were analyzed. Phylogeny consisted of fragments of the large subunit of nuclear encoded ribosomal DNA (D1/D2, LSU) and the internal transcribed spacer region 1 of nuclear encoded ribosomal DNA (ITS1) as well as the protein coding gene translation elongation factor 1 alpha (TEF). Results revealed unanimously two Metarhizium granulomatis genotypes in a total of three isolates, various M. viride genotypes (n = 3), two different Purpureocillium lilacinum isolates as well as one isolate of each P. lavendulum and Beauveria bassiana. Purpureocillium lilacinum and B. bassiana are likewise frequently employed as a mycoinsecticide and mycoacaricide in agriculture on a worldwide scale and have occasionally been reported in man, causing fungal keratitis, sclerokeratitis, nosocomial infections in immunosuppressed patients, as well as cavitary pulmonary disease and cutaneous hyalohyphomycosis in immunocompetent patients. According to the results establishment of Biotyper analysis for faster differentiation of reptile-associated fungal pathogens is entirely justified.


2019 ◽  
Vol 43 (3) ◽  
pp. 157-162
Author(s):  
Gülşen Hasçelik ◽  
Markus Kostrzewa ◽  
Hamit Kaan Müştak ◽  
Celalettin Uner ◽  
Kadir Serdar Diker

Abstract Background The routine identification to the species level of Nocardia genus by conventional methods is a fastidious and time-consuming process owing to the limited biochemical reactivity of these microorganisms, often requiring 1 or more days to complete identification. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a new technology for definitive and rapid species identification. Methods We evaluated the MALDI-TOF MS for the identification of 44 clinical isolates of Nocardia species in comparison to 16S ribosomal RNA (rRNA) gene sequencing. Nocardia isolates were identified by microbiological examination, phenotypical tests and MALDI-TOF MS and the results were compared by 16S rRNA gene sequencing. Results Of the 44 Nocardia strains, the identification of 28 isolates was determined with MALDI Biotyper database. According to this, 16 isolates (57.1%) of the strain log scores were ≥2. Two (7.1%) were identified to the species level (log scores of ≥2) as Nocardia otitidiscaviarum. The addition of a newly established Nocardia database (16 new Nocardia strains included to the original database) did significantly improve the scores. The results were 43 (97.7%) correct identification to the species level (log scores of ≥2). Conclusions This study showed that the identification of clinical Nocardia isolates by the Bruker MALDI Biotyper is highly reliable, whereas identification rates are generally lower than those for some Gram-negative bacteria and Gram-positive cocci. Based on our data, the identification rates can be improved by validated new database entries and the results can be confirmed with nucleic acid sequence analysis.


Sign in / Sign up

Export Citation Format

Share Document