scholarly journals X-ray plateaus in gamma-ray bursts’ light curves from jets viewed slightly off-axis

2020 ◽  
Vol 492 (2) ◽  
pp. 2847-2857 ◽  
Author(s):  
Paz Beniamini ◽  
Raphaël Duque ◽  
Frédéric Daigne ◽  
Robert Mochkovitch

ABSTRACT Using multiple observational arguments, recent work has shown that cosmological gamma-ray bursts (GRBs) are typically viewed at angles within, or close to the cores of their relativistic jets. One of those arguments relied on the lack of tens-of-days-long periods of very shallow evolution that would be seen in the afterglow light curves of GRBs viewed at large angles. Motivated by these results, we consider that GRBs efficiently produce γ-rays only within a narrow region around the core. We show that, on these near-core lines of sight, structured jets naturally produce shallow phases in the X-ray afterglow of GRBs. These plateaus would be seen by a large fraction of observers and would last between 102–105 s. They naturally reproduce the observed distributions of time-scales and luminosities as well as the intercorrelations between plateau duration, plateau luminosity, and prompt γ-ray energy. An advantage of this interpretation is that it involves no late-time energy injection which would be both challenging from the point of view of the central engine and, as we show here, less natural given the observed correlations between plateau and prompt properties.

Author(s):  
D.N Burrows ◽  
A Falcone ◽  
G Chincarini ◽  
D Morris ◽  
P Romano ◽  
...  

The Swift X-ray Telescope (XRT) has discovered that flares are quite common in early X-ray afterglows of gamma-ray bursts (GRBs), being observed in roughly 50% of afterglows with prompt follow-up observations. The flares range in fluence from a few per cent to approximately 100% of the fluence of the prompt emission (the GRB). Repetitive flares are seen, with more than four successive flares detected by the XRT in some afterglows. The rise and fall times of the flares are typically considerably smaller than the time since the burst. These characteristics suggest that the flares are related to the prompt emission mechanism, but at lower photon energies. We conclude that the most likely cause of these flares is late-time activity of the GRB central engine.


2020 ◽  
Vol 499 (4) ◽  
pp. 5986-5992
Author(s):  
Nikhil Sarin ◽  
Paul D Lasky ◽  
Gregory Ashton

ABSTRACT The spin-down energy of millisecond magnetars has been invoked to explain X-ray afterglow observations of a significant fraction of short and long gamma-ray bursts. Here, we extend models previously introduced in the literature, incorporating radiative losses with the spin-down of a magnetar central engine through an arbitrary braking index. Combining this with a model for the tail of the prompt emission, we show that our model can better explain the data than millisecond-magnetar models without radiative losses or those that invoke spin-down solely through vacuum dipole radiation. We find that our model predicts a subset of X-ray flares seen in some gamma-ray bursts. We can further explain the diversity of X-ray plateaus by altering the radiative efficiency and measure the braking index of newly born millisecond magnetars. We measure the braking index of GRB061121 as $n=4.85^{+0.11}_{-0.15}$ suggesting the millisecond-magnetar born in this gamma-ray burst spins down predominantly through gravitational-wave emission.


2021 ◽  
Vol 922 (2) ◽  
pp. 102
Author(s):  
Shu-Jin Hou ◽  
Shuang Du ◽  
Tong Liu ◽  
Hui-Jun Mu ◽  
Ren-Xin Xu

Abstract The central engine of gamma-ray bursts (GRBs) remains an open and cutting-edge topic in the era of multimessenger astrophysics. X-ray plateaus appear in some GRB afterglows, which are widely considered to originate from the spindown of magnetars. According to the stable magnetar scenario of GRBs, an X-ray plateau and a decay phase ∼t −2 should appear in X-ray afterglows. Meanwhile, the “normal” X-ray afterglow is produced by the external shock from a GRB fireball. We analyze the Neil Gehrels Swift GRB data, then find three gold samples that have an X-ray plateau and a decay phase ∼t −2 superimposed on the jet-driven normal component. Based on these features of the lightcurves, we argue that the magnetars should be the central engines of these three GRBs. Future joint multimessenger observations might further test this possibility, which can then be beneficial to constrain GRB physics.


2002 ◽  
Vol 141 (2) ◽  
pp. 415-428 ◽  
Author(s):  
D. A. Smith ◽  
A. Levine ◽  
H. Bradt ◽  
K. Hurley ◽  
M. Feroci ◽  
...  

2022 ◽  
Vol 924 (2) ◽  
pp. 69
Author(s):  
Shuang-Xi Yi ◽  
Mei Du ◽  
Tong Liu

Abstract Distinct X-ray plateau and flare phases have been observed in the afterglows of gamma-ray bursts (GRBs), and most of them should be related to central engine activities. In this paper, we collect 174 GRBs with X-ray plateau phases and 106 GRBs with X-ray flares. There are 51 GRBs that overlap in the two selected samples. We analyze the distributions of the proportions of the plateau energy E plateau and the flare energy E flare relative to the isotropic prompt emission energy E γ,iso. The results indicate that they well meet the Gaussian distributions and the medians of the logarithmic ratios are ∼−0.96 and −1.39 in the two cases. Moreover, strong positive correlations between E plateau (or E flare ) and E γ,iso with slopes of ∼0.95 (or ∼0.80) are presented. For the overlapping sample, the slope is ∼0.80. We argue that most of X-ray plateaus and flares might have the same physical origin but appear with different features because of the different circumstances and radiation mechanisms. We also test the applicabilities of two models, i.e., black holes surrounded by fractured hyperaccretion disks and millisecond magnetars, on the origins of X-ray plateaus and flares.


2020 ◽  
Vol 894 (1) ◽  
pp. 52
Author(s):  
Wen-Jin Xie ◽  
Le Zou ◽  
Hong-Bang Liu ◽  
Shan-Qin Wang ◽  
En-Wei Liang

2019 ◽  
Vol 486 (2) ◽  
pp. 2471-2476 ◽  
Author(s):  
B Gendre ◽  
Q T Joyce ◽  
N B Orange ◽  
G Stratta ◽  
J L Atteia ◽  
...  

Abstract Ultra-long gamma-ray bursts are a class of high-energy transients lasting several hours. Their exact nature is still elusive, and several models have been proposed to explain them. Because of the limited coverage of wide-field gamma-ray detectors, the study of their prompt phase with sensitive narrow-field X-ray instruments could help in understanding the origin of ultra-long GRBs. However, the observers face a true problem in rapidly activating follow-up observations, due to the challenging identification of an ultra-long GRB before the end of the prompt phase. We present here a comparison of the prompt properties available after a few tens of minutes of a sample of ultra-long GRBs and normal long GRBs, looking for prior indicators of the long duration. We find that there is no such clear prior indicator of the duration of the burst. We also found that statistically, a burst lasting at least 10 and 20 minutes has respectively $28{{\ \rm per\ cent}}$ and $50{{\ \rm per\ cent}}$ probability to be an ultralong event. These findings point towards a common central engine for normal long and ultra-long GRBs, with the collapsar model privileged.


2009 ◽  
Author(s):  
T. Sakamoto ◽  
N. Gehrels ◽  
Charles Meegan ◽  
Chryssa Kouveliotou ◽  
Neil Gehrels

2010 ◽  
Vol 719 (2) ◽  
pp. L172-L176 ◽  
Author(s):  
Lang Shao ◽  
Yi-Zhong Fan ◽  
Da-Ming Wei

Sign in / Sign up

Export Citation Format

Share Document