scholarly journals Can we quickly flag ultra-long gamma-ray bursts?

2019 ◽  
Vol 486 (2) ◽  
pp. 2471-2476 ◽  
Author(s):  
B Gendre ◽  
Q T Joyce ◽  
N B Orange ◽  
G Stratta ◽  
J L Atteia ◽  
...  

Abstract Ultra-long gamma-ray bursts are a class of high-energy transients lasting several hours. Their exact nature is still elusive, and several models have been proposed to explain them. Because of the limited coverage of wide-field gamma-ray detectors, the study of their prompt phase with sensitive narrow-field X-ray instruments could help in understanding the origin of ultra-long GRBs. However, the observers face a true problem in rapidly activating follow-up observations, due to the challenging identification of an ultra-long GRB before the end of the prompt phase. We present here a comparison of the prompt properties available after a few tens of minutes of a sample of ultra-long GRBs and normal long GRBs, looking for prior indicators of the long duration. We find that there is no such clear prior indicator of the duration of the burst. We also found that statistically, a burst lasting at least 10 and 20 minutes has respectively $28{{\ \rm per\ cent}}$ and $50{{\ \rm per\ cent}}$ probability to be an ultralong event. These findings point towards a common central engine for normal long and ultra-long GRBs, with the collapsar model privileged.

Author(s):  
J.-L. Atteia ◽  
B. Cordier ◽  
J. Wei

The Sino-French space mission SVOM is mainly designed to detect, localize and follow-up Gamma-Ray Bursts and other high-energy transients. The satellite, to be launched mid 2023, embarks two wide-field gamma-ray instruments and two narrow-field telescopes operating at X-ray and optical wavelengths. It is complemented by a dedicated ground segment encompassing a set of wide-field optical cameras and two 1-m class follow-up telescopes. In this contribution, we describe the main characteristics of the mission and discuss its scientific rationale and some original GRB studies that it will enable.


Author(s):  
D.N Burrows ◽  
A Falcone ◽  
G Chincarini ◽  
D Morris ◽  
P Romano ◽  
...  

The Swift X-ray Telescope (XRT) has discovered that flares are quite common in early X-ray afterglows of gamma-ray bursts (GRBs), being observed in roughly 50% of afterglows with prompt follow-up observations. The flares range in fluence from a few per cent to approximately 100% of the fluence of the prompt emission (the GRB). Repetitive flares are seen, with more than four successive flares detected by the XRT in some afterglows. The rise and fall times of the flares are typically considerably smaller than the time since the burst. These characteristics suggest that the flares are related to the prompt emission mechanism, but at lower photon energies. We conclude that the most likely cause of these flares is late-time activity of the GRB central engine.


2020 ◽  
Vol 499 (4) ◽  
pp. 5986-5992
Author(s):  
Nikhil Sarin ◽  
Paul D Lasky ◽  
Gregory Ashton

ABSTRACT The spin-down energy of millisecond magnetars has been invoked to explain X-ray afterglow observations of a significant fraction of short and long gamma-ray bursts. Here, we extend models previously introduced in the literature, incorporating radiative losses with the spin-down of a magnetar central engine through an arbitrary braking index. Combining this with a model for the tail of the prompt emission, we show that our model can better explain the data than millisecond-magnetar models without radiative losses or those that invoke spin-down solely through vacuum dipole radiation. We find that our model predicts a subset of X-ray flares seen in some gamma-ray bursts. We can further explain the diversity of X-ray plateaus by altering the radiative efficiency and measure the braking index of newly born millisecond magnetars. We measure the braking index of GRB061121 as $n=4.85^{+0.11}_{-0.15}$ suggesting the millisecond-magnetar born in this gamma-ray burst spins down predominantly through gravitational-wave emission.


2021 ◽  
Vol 922 (2) ◽  
pp. 102
Author(s):  
Shu-Jin Hou ◽  
Shuang Du ◽  
Tong Liu ◽  
Hui-Jun Mu ◽  
Ren-Xin Xu

Abstract The central engine of gamma-ray bursts (GRBs) remains an open and cutting-edge topic in the era of multimessenger astrophysics. X-ray plateaus appear in some GRB afterglows, which are widely considered to originate from the spindown of magnetars. According to the stable magnetar scenario of GRBs, an X-ray plateau and a decay phase ∼t −2 should appear in X-ray afterglows. Meanwhile, the “normal” X-ray afterglow is produced by the external shock from a GRB fireball. We analyze the Neil Gehrels Swift GRB data, then find three gold samples that have an X-ray plateau and a decay phase ∼t −2 superimposed on the jet-driven normal component. Based on these features of the lightcurves, we argue that the magnetars should be the central engines of these three GRBs. Future joint multimessenger observations might further test this possibility, which can then be beneficial to constrain GRB physics.


2003 ◽  
Vol 214 ◽  
pp. 70-83 ◽  
Author(s):  
T. P. Li

The energy range of hard X-rays is a key waveband to the study of high energy processes in celestial objects, but still remains poorly explored. In contrast to direct imaging methods used in the low energy X-ray and high energy gamma-ray bands, currently imaging in the hard X-ray band is mainly achieved through various modulation techniques. A new inversion technique, the direct demodulation method, has been developed since early 90s. with this technique, wide field and high resolution images can be derived from scanning data of a simple collimated detector. The feasibility of this technique has been confirmed by experiment, balloon-borne observation and analyzing simulated and real astronomical data. Based the development of methodology and instrumentation, a high energy astrophysics mission – Hard X-ray Modulation Telescope (HXMT) has been proposed and selected in China for a four-year Phase-A study. The main scientific objectives are a full-sky hard X-ray (20–200 keV) imaging survey and high signal-to-noise ratio timing studies of high energy sources.


2011 ◽  
Vol 7 (S279) ◽  
pp. 75-82
Author(s):  
Paolo A. Mazzali

AbstractThe properties of the Supernovae discovered in coincidence with long-duration Gamma-ray Bursts and X-Ray Flashes are reviewed, and compared to those of SNe for which GRBs are not observed. The SNe associated with GRBs are of Type Ic, they are brighter than the norm, and show very broad absorption lines in their spectra, indicative of high expansion velocities and hence of large explosion kinetic energies. This points to a massive star origin, and to the birth of a black hole at the time of core collapse. There is strong evidence for gross asymmetries in the SN ejecta. The observational evidence seems to suggest that GRB/SNe are more massive and energetic than XRF/SNe, and come from more massive stars. While for GRB/SNe the collapsar model is favoured, XRF/SNe may host magnetars.


1999 ◽  
Vol 69 (1-3) ◽  
pp. 716-719
Author(s):  
René Hudec ◽  
Ladislav Pina ◽  
Adolf Inneman ◽  
Paul Gorenstein ◽  
Tomáš Rezek
Keyword(s):  

10.14311/1496 ◽  
2012 ◽  
Vol 52 (1) ◽  
Author(s):  
Z. Bagoly ◽  
P. Veres ◽  
I. Horváth ◽  
A. Mészáros ◽  
L. G. Balázs

Gamma-ray bursts are usually classified into either short-duration or long-duration bursts. Going beyond the short-long classification scheme, it has been shown on statistical grounds that a third, intermediate population is needed in this classification scheme. We are looking for physical properties which discriminate the intermediate duration bursts from the other two classes. As the intermediate group is the softest, we argue that we have related them with X-ray flashes among the GRBs. We give a new, probabilistic definition for this class of events.


2022 ◽  
Vol 924 (2) ◽  
pp. 69
Author(s):  
Shuang-Xi Yi ◽  
Mei Du ◽  
Tong Liu

Abstract Distinct X-ray plateau and flare phases have been observed in the afterglows of gamma-ray bursts (GRBs), and most of them should be related to central engine activities. In this paper, we collect 174 GRBs with X-ray plateau phases and 106 GRBs with X-ray flares. There are 51 GRBs that overlap in the two selected samples. We analyze the distributions of the proportions of the plateau energy E plateau and the flare energy E flare relative to the isotropic prompt emission energy E γ,iso. The results indicate that they well meet the Gaussian distributions and the medians of the logarithmic ratios are ∼−0.96 and −1.39 in the two cases. Moreover, strong positive correlations between E plateau (or E flare ) and E γ,iso with slopes of ∼0.95 (or ∼0.80) are presented. For the overlapping sample, the slope is ∼0.80. We argue that most of X-ray plateaus and flares might have the same physical origin but appear with different features because of the different circumstances and radiation mechanisms. We also test the applicabilities of two models, i.e., black holes surrounded by fractured hyperaccretion disks and millisecond magnetars, on the origins of X-ray plateaus and flares.


Sign in / Sign up

Export Citation Format

Share Document