scholarly journals On the road to per cent accuracy – III. Non-linear reaction of the matter power spectrum to massive neutrinos

2019 ◽  
Vol 491 (3) ◽  
pp. 3101-3107 ◽  
Author(s):  
M Cataneo ◽  
J D Emberson ◽  
D Inman ◽  
J Harnois-Déraps ◽  
C Heymans

ABSTRACT We analytically model the non-linear effects induced by massive neutrinos on the total matter power spectrum using the halo model reaction framework of Cataneo et al. In this approach, the halo model is used to determine the relative change to the matter power spectrum caused by new physics beyond the concordance cosmology. Using standard fitting functions for the halo abundance and the halo mass–concentration relation, the total matter power spectrum in the presence of massive neutrinos is predicted to per cent-level accuracy, out to $k=10 \,{ h}\,{\rm Mpc}^{-1}$. We find that refining the prescriptions for the halo properties using N-body simulations improves the recovered accuracy to better than 1 per cent. This paper serves as another demonstration for how the halo model reaction framework, in combination with a single suite of standard Λ cold dark matter (ΛCDM) simulations, can recover per cent-level accurate predictions for beyond ΛCDM matter power spectra, well into the non-linear regime.

2019 ◽  
Vol 490 (4) ◽  
pp. 4826-4840 ◽  
Author(s):  
Benjamin Giblin ◽  
Matteo Cataneo ◽  
Ben Moews ◽  
Catherine Heymans

ABSTRACT We introduce an emulator approach to predict the non-linear matter power spectrum for broad classes of beyond-ΛCDM cosmologies, using only a suite of ΛCDM N-body simulations. By including a range of suitably modified initial conditions in the simulations, and rescaling the resulting emulator predictions with analytical ‘halo model reactions’, accurate non-linear matter power spectra for general extensions to the standard ΛCDM model can be calculated. We optimize the emulator design by substituting the simulation suite with non-linear predictions from the standard halofit tool. We review the performance of the emulator for artificially generated departures from the standard cosmology as well as for theoretically motivated models, such as f(R) gravity and massive neutrinos. For the majority of cosmologies we have tested, the emulator can reproduce the matter power spectrum with errors ${\lesssim}1{{\ \rm per\ cent}}$ deep into the highly non-linear regime. This work demonstrates that with a well-designed suite of ΛCDM simulations, extensions to the standard cosmological model can be tested in the non-linear regime without any reliance on expensive beyond-ΛCDM simulations.


Author(s):  
Benjamin Bose ◽  
Bill S Wright ◽  
Matteo Cataneo ◽  
Alkistis Pourtsidou ◽  
Carlo Giocoli ◽  
...  

Abstract In the context of forthcoming galaxy surveys, to ensure unbiased constraints on cosmology and gravity when using non-linear structure information, percent-level accuracy is required when modelling the power spectrum. This calls for frameworks that can accurately capture the relevant physical effects, while allowing for deviations from ΛCDM. Massive neutrino and baryonic physics are two of the most relevant such effects. We present an integration of the halo model reaction frameworks for massive neutrinos and beyond-ΛCDM cosmologies. The integrated halo model reaction, combined with a pseudo power spectrum modelled by HMCode2020 is then compared against N-body simulations that include both massive neutrinos and an f(R) modification to gravity. We find that the framework is 4 per cent accurate down to at least k ≈ 3 h Mpc−1 for a modification to gravity of |fR0| ≤ 10−5 and for the total neutrino mass Mν ≡ ∑mν ≤ 0.15 eV. We also find that the framework is 4 per cent consistent with EuclidEmulator2 as well as the Bacco emulator for most of the considered νwCDM cosmologies down to at least k ≈ 3 h Mpc−1. Finally, we compare against hydrodynamical simulations employing HMCode2020’s baryonic feedback modelling on top of the halo model reaction. For νΛCDM cosmologies we find 2 per cent accuracy for Mν ≤ 0.48 eV down to at least k ≈ 5h Mpc−1. Similar accuracy is found when comparing to νwCDM hydrodynamical simulations with Mν = 0.06 eV. This offers the first non-linear, theoretically general means of accurately including massive neutrinos for beyond-ΛCDM cosmologies, and further suggests that baryonic, massive neutrino and dark energy physics can be reliably modelled independently.


2019 ◽  
Vol 488 (2) ◽  
pp. 2121-2142 ◽  
Author(s):  
M Cataneo ◽  
L Lombriser ◽  
C Heymans ◽  
A J Mead ◽  
A Barreira ◽  
...  

ABSTRACT We present a general method to compute the non-linear matter power spectrum for dark energy (DE) and modified gravity scenarios with per cent-level accuracy. By adopting the halo model and non-linear perturbation theory, we predict the reaction of a lambda cold dark matter (ΛCDM) matter power spectrum to the physics of an extended cosmological parameter space. By comparing our predictions to N-body simulations we demonstrate that with no-free parameters we can recover the non-linear matter power spectrum for a wide range of different w0–wa DE models to better than 1 per cent accuracy out to k ≈ 1 $h \,{\rm Mpc}^{-1}$. We obtain a similar performance for both DGP and f(R) gravity, with the non-linear matter power spectrum predicted to better than 3 per cent accuracy over the same range of scales. When including direct measurements of the halo mass function from the simulations, this accuracy improves to 1 per cent. With a single suite of standard ΛCDM N-body simulations, our methodology provides a direct route to constrain a wide range of non-standard extensions to the concordance cosmology in the high signal-to-noise non-linear regime.


2012 ◽  
Vol 420 (3) ◽  
pp. 2551-2561 ◽  
Author(s):  
Simeon Bird ◽  
Matteo Viel ◽  
Martin G. Haehnelt

2020 ◽  
Vol 495 (4) ◽  
pp. 4800-4819 ◽  
Author(s):  
Giovanni Aricò ◽  
Raul E Angulo ◽  
Carlos Hernández-Monteagudo ◽  
Sergio Contreras ◽  
Matteo Zennaro ◽  
...  

ABSTRACT We present and test a framework that models the 3D distribution of mass in the universe as a function of cosmological and astrophysical parameters. Our approach combines two different techniques: a rescaling algorithm that modifies the cosmology of gravity-only N-body simulations, and a ‘baryonification’ algorithm that mimics the effects of astrophysical processes induced by baryons, such as star formation and active galactic nuclei (AGN) feedback. We show how this approach can accurately reproduce the effects of baryons on the matter power spectrum of various state-of-the-art hydrodynamical simulations (EAGLE, Illustris, Illustris-TNG, Horizon-AGN, and OWLS, Cosmo-OWLS and BAHAMAS), to better than 1 per cent from very large down to small, highly non-linear, scales ($k\sim 5 \, h\, {\rm Mpc}^{-1}$), and from z = 0 up to z ∼ 2. We highlight that, because of the heavy optimization of our algorithms, we can obtain these predictions for arbitrary baryonic models and cosmology (including massive neutrinos and dynamical dark energy models) with an almost negligible CPU cost. With these tools in hand, we explore the degeneracies between cosmological and astrophysical parameters in the non-linear mass power spectrum. Our findings suggest that after marginalizing over baryonic physics, cosmological constraints inferred from weak gravitational lensing should be moderately degraded.


2020 ◽  
Vol 500 (2) ◽  
pp. 2532-2542
Author(s):  
Linda Blot ◽  
Pier-Stefano Corasaniti ◽  
Yann Rasera ◽  
Shankar Agarwal

ABSTRACT Future galaxy surveys will provide accurate measurements of the matter power spectrum across an unprecedented range of scales and redshifts. The analysis of these data will require one to accurately model the imprint of non-linearities of the matter density field. In particular, these induce a non-Gaussian contribution to the data covariance that needs to be properly taken into account to realize unbiased cosmological parameter inference analyses. Here, we study the cosmological dependence of the matter power spectrum covariance using a dedicated suite of N-body simulations, the Dark Energy Universe Simulation–Parallel Universe Runs (DEUS-PUR) Cosmo. These consist of 512 realizations for 10 different cosmologies where we vary the matter density Ωm, the amplitude of density fluctuations σ8, the reduced Hubble parameter h, and a constant dark energy equation of state w by approximately $10{{\ \rm per\ cent}}$. We use these data to evaluate the first and second derivatives of the power spectrum covariance with respect to a fiducial Λ-cold dark matter cosmology. We find that the variations can be as large as $150{{\ \rm per\ cent}}$ depending on the scale, redshift, and model parameter considered. By performing a Fisher matrix analysis we explore the impact of different choices in modelling the cosmological dependence of the covariance. Our results suggest that fixing the covariance to a fiducial cosmology can significantly affect the recovered parameter errors and that modelling the cosmological dependence of the variance while keeping the correlation coefficient fixed can alleviate the impact of this effect.


2019 ◽  
Vol 485 (4) ◽  
pp. 5474-5489 ◽  
Author(s):  
Mark R Lovell ◽  
Jesús Zavala ◽  
Mark Vogelsberger

Abstract A cut-off in the linear matter power spectrum at dwarf galaxy scales has been shown to affect the abundance, formation mechanism and age of dwarf haloes, and their galaxies at high and low redshifts. We use hydrodynamical simulations of galaxy formation within the ETHOS framework in a benchmark model that has such a cut-off and that has been shown to be an alternative to the cold dark matter (CDM) model that alleviates its dwarf-scale challenges. We show how galaxies in this model form differently to CDM, on a halo-by-halo basis, at redshifts z ≥ 6. We show that when CDM haloes with masses around the ETHOS half-mode mass scale are resimulated with the ETHOS matter power spectrum, they form with 50 per cent less mass than their CDM counterparts due to their later formation times, yet they retain more of their gas reservoir due to the different behaviour of gas and dark matter during the monolithic collapse of the first haloes in models with a galactic-scale cut-off. As a result, galaxies in ETHOS haloes near the cut-off scale grow rapidly between z = 10 and 6 and by z = 6 end up having very similar stellar masses, higher gas fractions and higher star formation rates relative to their CDM counterparts. We highlight these differences by making predictions for how the number of galaxies with old stellar populations is suppressed in ETHOS for both z = 6 galaxies and for gas-poor Local Group fossil galaxies. Interestingly, we find an age gradient in ETHOS between galaxies that form in high- and low-density environments.


2020 ◽  
Vol 498 (3) ◽  
pp. 3403-3419
Author(s):  
Sebastian Bohr ◽  
Jesús Zavala ◽  
Francis-Yan Cyr-Racine ◽  
Mark Vogelsberger ◽  
Torsten Bringmann ◽  
...  

ABSTRACT We propose two effective parameters that fully characterize galactic-scale structure formation at high redshifts (z ≳ 5) for a variety of dark matter (DM) models that have a primordial cutoff in the matter power spectrum. Our description is within the recently proposed ETHOS framework and includes standard thermal warm DM (WDM) and models with dark acoustic oscillations (DAOs). To define and explore this parameter space, we use high-redshift zoom-in simulations that cover a wide range of non-linear scales from those where DM should behave as CDM (k ∼ 10 h Mpc−1), down to those characterized by the onset of galaxy formation (k ∼ 500 h Mpc−1). We show that the two physically motivated parameters hpeak and kpeak, the amplitude and scale of the first DAO peak, respectively, are sufficient to parametrize the linear matter power spectrum and classify the DM models as belonging to effective non-linear structure formation regions. These are defined by their relative departure from cold DM (kpeak → ∞) and WDM (hpeak = 0) according to the non-linear matter power spectrum and halo mass function. We identify a region where the DAOs still leave a distinct signature from WDM down to z = 5, while a large part of the DAO parameter space is shown to be degenerate with WDM. Our framework can then be used to seamlessly connect a broad class of particle DM models to their structure formation properties at high redshift without the need of additional N-body simulations.


Sign in / Sign up

Export Citation Format

Share Document