scholarly journals On the road to percent accuracy: non-linear reaction of the matter power spectrum to dark energy and modified gravity

2019 ◽  
Vol 488 (2) ◽  
pp. 2121-2142 ◽  
Author(s):  
M Cataneo ◽  
L Lombriser ◽  
C Heymans ◽  
A J Mead ◽  
A Barreira ◽  
...  

ABSTRACT We present a general method to compute the non-linear matter power spectrum for dark energy (DE) and modified gravity scenarios with per cent-level accuracy. By adopting the halo model and non-linear perturbation theory, we predict the reaction of a lambda cold dark matter (ΛCDM) matter power spectrum to the physics of an extended cosmological parameter space. By comparing our predictions to N-body simulations we demonstrate that with no-free parameters we can recover the non-linear matter power spectrum for a wide range of different w0–wa DE models to better than 1 per cent accuracy out to k ≈ 1 $h \,{\rm Mpc}^{-1}$. We obtain a similar performance for both DGP and f(R) gravity, with the non-linear matter power spectrum predicted to better than 3 per cent accuracy over the same range of scales. When including direct measurements of the halo mass function from the simulations, this accuracy improves to 1 per cent. With a single suite of standard ΛCDM N-body simulations, our methodology provides a direct route to constrain a wide range of non-standard extensions to the concordance cosmology in the high signal-to-noise non-linear regime.

2020 ◽  
Vol 500 (2) ◽  
pp. 2532-2542
Author(s):  
Linda Blot ◽  
Pier-Stefano Corasaniti ◽  
Yann Rasera ◽  
Shankar Agarwal

ABSTRACT Future galaxy surveys will provide accurate measurements of the matter power spectrum across an unprecedented range of scales and redshifts. The analysis of these data will require one to accurately model the imprint of non-linearities of the matter density field. In particular, these induce a non-Gaussian contribution to the data covariance that needs to be properly taken into account to realize unbiased cosmological parameter inference analyses. Here, we study the cosmological dependence of the matter power spectrum covariance using a dedicated suite of N-body simulations, the Dark Energy Universe Simulation–Parallel Universe Runs (DEUS-PUR) Cosmo. These consist of 512 realizations for 10 different cosmologies where we vary the matter density Ωm, the amplitude of density fluctuations σ8, the reduced Hubble parameter h, and a constant dark energy equation of state w by approximately $10{{\ \rm per\ cent}}$. We use these data to evaluate the first and second derivatives of the power spectrum covariance with respect to a fiducial Λ-cold dark matter cosmology. We find that the variations can be as large as $150{{\ \rm per\ cent}}$ depending on the scale, redshift, and model parameter considered. By performing a Fisher matrix analysis we explore the impact of different choices in modelling the cosmological dependence of the covariance. Our results suggest that fixing the covariance to a fiducial cosmology can significantly affect the recovered parameter errors and that modelling the cosmological dependence of the variance while keeping the correlation coefficient fixed can alleviate the impact of this effect.


2019 ◽  
Vol 491 (3) ◽  
pp. 3101-3107 ◽  
Author(s):  
M Cataneo ◽  
J D Emberson ◽  
D Inman ◽  
J Harnois-Déraps ◽  
C Heymans

ABSTRACT We analytically model the non-linear effects induced by massive neutrinos on the total matter power spectrum using the halo model reaction framework of Cataneo et al. In this approach, the halo model is used to determine the relative change to the matter power spectrum caused by new physics beyond the concordance cosmology. Using standard fitting functions for the halo abundance and the halo mass–concentration relation, the total matter power spectrum in the presence of massive neutrinos is predicted to per cent-level accuracy, out to $k=10 \,{ h}\,{\rm Mpc}^{-1}$. We find that refining the prescriptions for the halo properties using N-body simulations improves the recovered accuracy to better than 1 per cent. This paper serves as another demonstration for how the halo model reaction framework, in combination with a single suite of standard Λ cold dark matter (ΛCDM) simulations, can recover per cent-level accurate predictions for beyond ΛCDM matter power spectra, well into the non-linear regime.


2020 ◽  
Vol 498 (3) ◽  
pp. 3403-3419
Author(s):  
Sebastian Bohr ◽  
Jesús Zavala ◽  
Francis-Yan Cyr-Racine ◽  
Mark Vogelsberger ◽  
Torsten Bringmann ◽  
...  

ABSTRACT We propose two effective parameters that fully characterize galactic-scale structure formation at high redshifts (z ≳ 5) for a variety of dark matter (DM) models that have a primordial cutoff in the matter power spectrum. Our description is within the recently proposed ETHOS framework and includes standard thermal warm DM (WDM) and models with dark acoustic oscillations (DAOs). To define and explore this parameter space, we use high-redshift zoom-in simulations that cover a wide range of non-linear scales from those where DM should behave as CDM (k ∼ 10 h Mpc−1), down to those characterized by the onset of galaxy formation (k ∼ 500 h Mpc−1). We show that the two physically motivated parameters hpeak and kpeak, the amplitude and scale of the first DAO peak, respectively, are sufficient to parametrize the linear matter power spectrum and classify the DM models as belonging to effective non-linear structure formation regions. These are defined by their relative departure from cold DM (kpeak → ∞) and WDM (hpeak = 0) according to the non-linear matter power spectrum and halo mass function. We identify a region where the DAOs still leave a distinct signature from WDM down to z = 5, while a large part of the DAO parameter space is shown to be degenerate with WDM. Our framework can then be used to seamlessly connect a broad class of particle DM models to their structure formation properties at high redshift without the need of additional N-body simulations.


2020 ◽  
Vol 500 (3) ◽  
pp. 3162-3177
Author(s):  
Jurek B Bauer ◽  
David J E Marsh ◽  
Renée Hložek ◽  
Hamsa Padmanabhan ◽  
Alex Laguë

ABSTRACT We consider intensity mapping (IM) of neutral hydrogen (H i) in the redshift range 0 ≲ z ≲ 3 employing a halo model approach where H i is assumed to follow the distribution of dark matter (DM) haloes. If a portion of the DM is composed of ultralight axions, then the abundance of haloes is changed compared to cold DM below the axion Jeans mass. With fixed total H i density, $\Omega _{\rm H\, \rm {\small I}}$, assumed to reside entirely in haloes, this effect introduces a scale-independent increase in the H i power spectrum on scales above the axion Jeans scale, which our model predicts consistent with N-body simulations. Lighter axions introduce a scale-dependent feature even on linear scales due to its suppression of the matter power spectrum near the Jeans scale. We use the Fisher matrix formalism to forecast the ability of future H i surveys to constrain the axion fraction of DM and marginalize over astrophysical and model uncertainties. We find that a HIRAX-like survey is a very reliable IM survey configuration, being affected minimally by uncertainties due to non-linear scales, while the SKA1MID configuration is the most constraining as it is sensitive to non-linear scales. Including non-linear scales and combining a SKA1MID-like IM survey with the Simons Observatory CMB, the benchmark ‘fuzzy DM’ model with ma = 10−22 eV can be constrained at few per cent. This is almost an order of magnitude improvement over current limits from the Ly α forest. For lighter ULAs, this limit improves below 1 per cent, and allows the possibility to test the connection between axion models and the grand unification scale across a wide range of masses.


2019 ◽  
Vol 485 (4) ◽  
pp. 5474-5489 ◽  
Author(s):  
Mark R Lovell ◽  
Jesús Zavala ◽  
Mark Vogelsberger

Abstract A cut-off in the linear matter power spectrum at dwarf galaxy scales has been shown to affect the abundance, formation mechanism and age of dwarf haloes, and their galaxies at high and low redshifts. We use hydrodynamical simulations of galaxy formation within the ETHOS framework in a benchmark model that has such a cut-off and that has been shown to be an alternative to the cold dark matter (CDM) model that alleviates its dwarf-scale challenges. We show how galaxies in this model form differently to CDM, on a halo-by-halo basis, at redshifts z ≥ 6. We show that when CDM haloes with masses around the ETHOS half-mode mass scale are resimulated with the ETHOS matter power spectrum, they form with 50 per cent less mass than their CDM counterparts due to their later formation times, yet they retain more of their gas reservoir due to the different behaviour of gas and dark matter during the monolithic collapse of the first haloes in models with a galactic-scale cut-off. As a result, galaxies in ETHOS haloes near the cut-off scale grow rapidly between z = 10 and 6 and by z = 6 end up having very similar stellar masses, higher gas fractions and higher star formation rates relative to their CDM counterparts. We highlight these differences by making predictions for how the number of galaxies with old stellar populations is suppressed in ETHOS for both z = 6 galaxies and for gas-poor Local Group fossil galaxies. Interestingly, we find an age gradient in ETHOS between galaxies that form in high- and low-density environments.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850034 ◽  
Author(s):  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Sarfraz Ahmad ◽  
Iftikhar Ahmed

We discuss the interacting modified QCD ghost dark energy and generalized ghost pilgrim dark energy with cold dark matter in the framework of dynamical Chern–Simons modified gravity. We investigate the cosmological parameters such as Hubble parameter, deceleration parameter and equation of state. We also discuss the physical significance of various cosmological planes like [Formula: see text] and statefinders. It is found that the results of cosmological parameters as well as planes explain the accelerated expansion of the Universe and are compatible with observational data.


1987 ◽  
Vol 117 ◽  
pp. 367-367
Author(s):  
Rosemary F. G. Wyse ◽  
Bernard J. T. Jones

We present a simple model for the formation of elliptical galaxies, based on a binary clustering hierarchy of dark matter, the chemical enrichment of the gas at each level being controlled by supernovae. The initial conditions for the non-linear phases of galaxy formation are set by the post-recombination power spectrum of density fluctuations. We investigate two models for this power spectrum - the first is a straightforward power law, |δk|2 ∝ kn, and the second is Peeble's analytic approximation to the emergent spectrum in a universe dominated by cold dark matter. The normalisation is chosen such that on some scale, say M ∼ 1012M⊙, the objects that condense out have properties - radius and velocity dispersion - resembling ‘typical’ galaxies. There is some ambiguity in this due to the poorly determined mass-to-light ratio of a typical elliptical galaxy — we look at two normalisations, σ1D ∼ 350kms−1 and σ1D ∼ 140kms−1. The choice determines which of Compton cooling or hydrogen cooling is more important during the galaxy formation period. The non-linear behaviour of the perturbations is treated by the homogeneous sphere approximation.


Sign in / Sign up

Export Citation Format

Share Document