scholarly journals Multiwavelength classification of X-ray selected galaxy cluster candidates using convolutional neural networks

2020 ◽  
Vol 496 (4) ◽  
pp. 4141-4153
Author(s):  
Matej Kosiba ◽  
Maggie Lieu ◽  
Bruno Altieri ◽  
Nicolas Clerc ◽  
Lorenzo Faccioli ◽  
...  

ABSTRACT Galaxy clusters appear as extended sources in XMM–Newton images, but not all extended sources are clusters. So, their proper classification requires visual inspection with optical images, which is a slow process with biases that are almost impossible to model. We tackle this problem with a novel approach, using convolutional neural networks (CNNs), a state-of-the-art image classification tool, for automatic classification of galaxy cluster candidates. We train the networks on combined XMM–Newton X-ray observations with their optical counterparts from the all-sky Digitized Sky Survey. Our data set originates from the XMM CLuster Archive Super Survey (X-CLASS) survey sample of galaxy cluster candidates, selected by a specially developed pipeline, the XAmin, tailored for extended source detection and characterization. Our data set contains 1707 galaxy cluster candidates classified by experts. Additionally, we create an official Zooniverse citizen science project, The Hunt for Galaxy Clusters, to probe whether citizen volunteers could help in a challenging task of galaxy cluster visual confirmation. The project contained 1600 galaxy cluster candidates in total of which 404 overlap with the expert’s sample. The networks were trained on expert and Zooniverse data separately. The CNN test sample contains 85 spectroscopically confirmed clusters and 85 non-clusters that appear in both data sets. Our custom network achieved the best performance in the binary classification of clusters and non-clusters, acquiring accuracy of 90 per cent, averaged after 10 runs. The results of using CNNs on combined X-ray and optical data for galaxy cluster candidate classification are encouraging, and there is a lot of potential for future usage and improvements.

2021 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Ivan Lorencin ◽  
Sandi Baressi Šegota ◽  
Nikola Anđelić ◽  
Anđela Blagojević ◽  
Tijana Šušteršić ◽  
...  

COVID-19 represents one of the greatest challenges in modern history. Its impact is most noticeable in the health care system, mostly due to the accelerated and increased influx of patients with a more severe clinical picture. These facts are increasing the pressure on health systems. For this reason, the aim is to automate the process of diagnosis and treatment. The research presented in this article conducted an examination of the possibility of classifying the clinical picture of a patient using X-ray images and convolutional neural networks. The research was conducted on the dataset of 185 images that consists of four classes. Due to a lower amount of images, a data augmentation procedure was performed. In order to define the CNN architecture with highest classification performances, multiple CNNs were designed. Results show that the best classification performances can be achieved if ResNet152 is used. This CNN has achieved AUCmacro¯ and AUCmicro¯ up to 0.94, suggesting the possibility of applying CNN to the classification of the clinical picture of COVID-19 patients using an X-ray image of the lungs. When higher layers are frozen during the training procedure, higher AUCmacro¯ and AUCmicro¯ values are achieved. If ResNet152 is utilized, AUCmacro¯ and AUCmicro¯ values up to 0.96 are achieved if all layers except the last 12 are frozen during the training procedure.


2021 ◽  
Vol 503 (2) ◽  
pp. 2791-2803
Author(s):  
Swapnil Shankar ◽  
Rishi Khatri

ABSTRACT We present a new method to determine the probability distribution of the 3D shapes of galaxy clusters from the 2D images using stereology. In contrast to the conventional approach of combining different data sets (such as X-rays, Sunyaev–Zeldovich effect, and lensing) to fit a 3D model of a galaxy cluster for each cluster, our method requires only a single data set, such as X-ray observations or Sunyaev–Zeldovich effect observations, consisting of sufficiently large number of clusters. Instead of reconstructing the 3D shape of an individual object, we recover the probability distribution function (PDF) of the 3D shapes of the observed galaxy clusters. The shape PDF is the relevant statistical quantity, which can be compared with the theory and used to test the cosmological models. We apply this method to publicly available Chandra X-ray data of 89 well-resolved galaxy clusters. Assuming ellipsoidal shapes, we find that our sample of galaxy clusters is a mixture of prolate and oblate shapes, with a preference for oblateness with the most probable ratio of principle axes 1.4 : 1.3 : 1. The ellipsoidal assumption is not essential to our approach and our method is directly applicable to non-ellipsoidal shapes. Our method is insensitive to the radial density and temperature profiles of the cluster. Our method is sensitive to the changes in shape of the X-ray emitting gas from inner to outer regions and we find evidence for variation in the 3D shape of the X-ray emitting gas with distance from the centre.


Author(s):  
Lucas Garcia Nachtigall ◽  
Ricardo Matsumura Araujo ◽  
Gilmar Ribeiro Nachtigall

Rapid diagnosis of symptoms caused by pest attack, diseases and nutritional or physiological disorders in apple orchards is essential to avoid greater losses. This paper aimed to evaluate the efficiency of Convolutional Neural Networks (CNN) to automatically detect and classify symptoms of diseases, nutritional deficiencies and damage caused by herbicides in apple trees from images of their leaves and fruits. A novel data set was developed containing labeled examples consisting of approximately 10,000 images of leaves and apple fruits divided into 12 classes, which were classified by algorithms of machine learning, with emphasis on models of deep learning. The results showed trained CNNs can overcome the performance of experts and other algorithms of machine learning in the classification of symptoms in apple trees from leaves images, with an accuracy of 97.3% and obtain 91.1% accuracy with fruit images. In this way, the use of Convolutional Neural Networks may enable the diagnosis of symptoms in apple trees in a fast, precise and usual way.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Patrick Beyersdorffer ◽  
Wolfgang Kunert ◽  
Kai Jansen ◽  
Johanna Miller ◽  
Peter Wilhelm ◽  
...  

Abstract Uncontrolled movements of laparoscopic instruments can lead to inadvertent injury of adjacent structures. The risk becomes evident when the dissecting instrument is located outside the field of view of the laparoscopic camera. Technical solutions to ensure patient safety are appreciated. The present work evaluated the feasibility of an automated binary classification of laparoscopic image data using Convolutional Neural Networks (CNN) to determine whether the dissecting instrument is located within the laparoscopic image section. A unique record of images was generated from six laparoscopic cholecystectomies in a surgical training environment to configure and train the CNN. By using a temporary version of the neural network, the annotation of the training image files could be automated and accelerated. A combination of oversampling and selective data augmentation was used to enlarge the fully labeled image data set and prevent loss of accuracy due to imbalanced class volumes. Subsequently the same approach was applied to the comprehensive, fully annotated Cholec80 database. The described process led to the generation of extensive and balanced training image data sets. The performance of the CNN-based binary classifiers was evaluated on separate test records from both databases. On our recorded data, an accuracy of 0.88 with regard to the safety-relevant classification was achieved. The subsequent evaluation on the Cholec80 data set yielded an accuracy of 0.84. The presented results demonstrate the feasibility of a binary classification of laparoscopic image data for the detection of adverse events in a surgical training environment using a specifically configured CNN architecture.


2021 ◽  
Vol 42 (1) ◽  
pp. e90289
Author(s):  
Carlos Eduardo Belman López

Given that it is fundamental to detect positive COVID-19 cases and treat affected patients quickly to mitigate the impact of the virus, X-ray images have been subjected to research regarding COVID-19, together with deep learning models, eliminating disadvantages such as the scarcity of RT-PCR test kits, their elevated costs, and the long wait for results. The contribution of this paper is to present new models for detecting COVID-19 and other cases of pneumonia using chest X-ray images and convolutional neural networks, thus providing accurate diagnostics in binary and 4-classes classification scenarios. Classification accuracy was improved, and overfitting was prevented by following 2 actions: (1) increasing the data set size while the classification scenarios were balanced; and (2) adding regularization techniques and performing hyperparameter optimization. Additionally, the network capacity and size in the models were reduced as much as possible, making the final models a perfect option to be deployed locally on devices with limited capacities and without the need for Internet access. The impact of key hyperparameters was tested using modern deep learning packages. The final models obtained a classification accuracy of 99,17 and 94,03% for the binary and categorical scenarios, respectively, achieving superior performance compared to other studies in the literature, and requiring a significantly lower number of parameters. The models can also be placed on a digital platform to provide instantaneous diagnostics and surpass the shortage of experts and radiologists.


2020 ◽  
Vol 12 (3) ◽  
pp. 132-141
Author(s):  
Nator Junior Carvalho da Costa ◽  
Jose Vigno Moura Sousa ◽  
Domingos Bruno Sousa Santos ◽  
Francisco das Chagas Fontenele Marques Junior ◽  
Rodrigo Teixeira de Melo

This paper describes a comparison between three pre-trained neural networks for the classification of chest X-ray images: Xception, Inception V3, and NasNetLarge. Networks were implemented using learning transfer; The database used was the chest x-ray data set, which contains a total of 5856 chest x-ray images of pediatric patients aged one to five years, with three classes: Normal Viral Pneumonia and Bacterial Pneumonia. Data were divided into three groups: validation, testing and training. A comparison was made with the work of kermany who implemented the Inception V3 network in two ways: (Pneumonia X Normal) and (Bacterial Pneumonia X Viral Pneumonia). The nets used had good accuracy, being the NasNetLarge network the best precision, which was 95.35 \% (Pneumonia X Normal) and 91.79 \% (Viral Pneumonia X Bacterial Pneumonia) against 92.80 \% in (Pneumonia X Normal) and 90.70 \% (Viral Pneumonia X Bacterial Pneumonia) from kermany's work, the Xception network also achieved an improvement in accuracy compared to kermany's work, with 93.59 \% at (Normal X Pneumonia) and 91.03 \% in (Viral Pneumonia X Bacterial Pneumonia).


2020 ◽  
Vol 633 ◽  
pp. A148 ◽  
Author(s):  
J. Bialopetravičius ◽  
D. Narbutis

Context. Convolutional neural networks (CNNs) have been established as the go-to method for fast object detection and classification of natural images. This opens the door for astrophysical parameter inference on the exponentially increasing amount of sky survey data. Until now, star cluster analysis was based on integral or resolved stellar photometry, which limit the amount of information that can be extracted from individual pixels of cluster images. Aims. We aim to create a CNN capable of inferring star cluster evolutionary, structural, and environmental parameters from multiband images and to demonstrate its capabilities in discriminating genuine clusters from galactic stellar backgrounds. Methods. A CNN based on the deep residual network (ResNet) architecture was created and trained to infer cluster ages, masses, sizes, and extinctions with respect to the degeneracies between them. Mock clusters placed on M 83 Hubble Space Telescope images utilizing three photometric passbands (F336W, F438W, and F814W) were used. The CNN is also capable of predicting the likelihood of the presence of a cluster in an image and quantifying its visibility (S/N). Results. The CNN was tested on mock images of artificial clusters and has demonstrated reliable inference results for clusters of ages ≲100 Myr, extinctions AV between 0 and 3 mag, masses between 3 × 103 and 3 × 105 M⊙, and sizes between 0.04 and 0.4 arcsec at the distance of the M 83 galaxy. Real M 83 galaxy cluster parameter inference tests were performed with objects taken from previous studies and have demonstrated consistent results.


Sign in / Sign up

Export Citation Format

Share Document