scholarly journals The origin of X-ray emission in the gamma-ray emitting narrow-line Seyfert 1 1H 0323+342

2020 ◽  
Vol 496 (3) ◽  
pp. 2922-2931 ◽  
Author(s):  
Sergio A Mundo ◽  
Erin Kara ◽  
Edward M Cackett ◽  
A C Fabian ◽  
J Jiang ◽  
...  

ABSTRACT We present the results of X-ray spectral and timing analyses of the closest gamma-ray emitting narrow-line Seyfert 1 (γ-NLS1) galaxy, 1H 0323+342. We use observations from a recent, simultaneous XMM–Newton/NuSTAR campaign. As in radio-quiet NLS1s, the spectrum reveals a soft excess at low energies (≲2 keV) and reflection features such as a broad iron K emission line. We also find evidence of a hard excess at energies above ∼35 keV that is likely a consequence of jet emission. Our analysis shows that relativistic reflection is statistically required, and using a combination of models that includes the reflection model relxill for the broad-band spectrum, we find an inclination of $i=63^{+7}_{-5}$ degrees, which is in tension with much lower values inferred by superluminal motion in radio observations. We also find a flat (q = 2.2 ± 0.3) emissivity profile, implying that there is more reflected flux than usual being emitted from the outer regions of the disc, which in turn suggests a deviation from the thin disc model assumption. We discuss possible reasons for this, such as reflection off of a thick accretion disc geometry.

2020 ◽  
Vol 498 (3) ◽  
pp. 3888-3901
Author(s):  
Jiachen Jiang ◽  
Luigi C Gallo ◽  
Andrew C Fabian ◽  
Michael L Parker ◽  
Christopher S Reynolds

ABSTRACT We present a detailed analysis of the XMM–Newton observations of five narrow-line Seyfert 1 galaxies (NLS1s). They all show very soft continuum emission in the X-ray band with a photon index of Γ ≳ 2.5. Therefore, they are referred to as ‘ultra-soft’ NLS1s in this paper. By modelling their optical/UV–X-ray spectral energy distribution (SED) with a reflection-based model, we find indications that the disc surface in these ultra-soft NLS1s is in a higher ionization state than other typical Seyfert 1 AGN. Our best-fitting SED models suggest that these five ultra-soft NLS1s have an Eddington ratio of λEdd = 1–20 assuming available black hole mass measurements. In addition, our models infer that a significant fraction of the disc energy in these ultra-soft NLS1s is radiated away in the form of non-thermal emission instead of the thermal emission from the disc. Due to their extreme properties, X-ray observations of these sources in the iron band are particularly challenging. Future observations, e.g. from Athena, will enable us to have a clearer view of the spectral shape in the iron band and thus distinguish the reflection model from other interpretations of their broad-band spectra.


1998 ◽  
Vol 164 ◽  
pp. 69-70 ◽  
Author(s):  
S.C. Unwin ◽  
A.E. Wehrle ◽  
W. Xu ◽  
A.C. Zook ◽  
A.P. Marscher

AbstractThe blazar 3C 279 is one of the strongest extragalactic sources of γ-rays, and is also one of the best studied superluminal radio sources. Definitive testing of models of the broad-band spectral energy distribution, especially in the X-ray and γ-ray regions requires knowledge of the evolution of the spectrum with time. Within the context of the relativistic jet model, multi-wavelength monitoring of the parsec-scale radio jet is also required. We present here the first steps toward such a test, using extensive VLBI monitoring over a 13 year interval at 22 GHz, and γ-ray observations between 1991 and 1996.


1994 ◽  
Vol 159 ◽  
pp. 63-72 ◽  
Author(s):  
E. Churazov ◽  
M. Gilfanov ◽  
A. Finoguenov ◽  
R. Sunyaev ◽  
M. Chernyakova ◽  
...  

Brief review of AGNs observations in the X-ray / soft gamma-ray bands with the orbital observatory GRANAT is presented.For three well known bright objects (3C273, NGC4151 and Cen A) broad band (3 keV–few hundreds keV) spectra have been obtained. Imaging capabilities allowed accurate (several arcminutes) identification of these objects with sources of hard X-rays.The spectrum of NGC4151 above ≈ 50 keV was found to be much steeper than that in most of the previous observations, while in standard X-ray band the spectrum agrees with observed previously. The comparison of the observed spectra with that of the X-Ray Background (XRB) indicates that sources similar to NGC4151 could reproduce the shape of XRB spectrum in 3–60 keV band.Cen A was observed in the very low state during most of observations in 1990–1993, except for two observations in 1991. The variability of the hard X-ray flux has been detected on the time scales of several days.


2020 ◽  
Vol 497 (4) ◽  
pp. 4213-4221
Author(s):  
Ritesh Ghosh ◽  
Sibasish Laha

ABSTRACT We have extensively studied the broad--band X-ray spectra of the source ESO 141–G055 using all available XMM–Newton and NuSTAR observations. We detect a prominent soft excess below $2\rm \, \, {\rm keV}$, a narrow Fe line, and a Compton hump ($\gt 10\rm \, \, {\rm keV}$). The origin of the soft excess is still debated. We used two models to describe the soft excess: the blurred reflection from the ionized accretion disc and the intrinsic thermal Comptonization model. We find that both of these models explain the soft excess equally well. We confirm that we do not detect any broad Fe line in the X-ray spectra of this source, although both the physical models prefer a maximally spinning black hole scenario (a > 0.96). This may mean that either the broad Fe line is absent or blurred beyond detection. The Eddington rate of the source is estimated to be $\lambda _{\rm \, Edd}\sim 0.31$. In the reflection model, the Compton hump has a contribution from both ionized and neutral reflection components. The neutral reflector which simultaneously describes the narrow Fe K α and the Compton hump has a column density of $N_{\rm H} \ge 7\times 10^{24} \, \rm cm^{-2}$. In addition, we detect a partially covering ionized absorption with ionization parameter $\log \xi /\rm \, erg\, cm\, s^{-1}$  = $0.1^{+0.1}_{-0.1}$ and column density $N_{\rm H} =20.6^{+1.0}_{-1.0}\times 10^{22} \, \rm cm^{-2}$ with a covering factor of $0.21^{+0.01}_{-0.01}$.


2019 ◽  
Vol 622 ◽  
pp. A211 ◽  
Author(s):  
Francesco Coti Zelati ◽  
Alessandro Papitto ◽  
Domitilla de Martino ◽  
David A. H. Buckley ◽  
Alida Odendaal ◽  
...  

We report on a multi-wavelength study of the unclassified X-ray source CXOU J110926.4−650224 (J1109). We identified the optical counterpart as a blue star with a magnitude of ∼20.1 (3300–10500 Å). The optical emission was variable on timescales from hundreds to thousands of seconds. The spectrum showed prominent emission lines with variable profiles at different epochs. Simultaneous XMM-Newton and NuSTAR observations revealed a bimodal distribution of the X-ray count rates on timescales as short as tens of seconds, as well as sporadic flaring activity. The average broad-band (0.3–79 keV) spectrum was adequately described by an absorbed power law model with photon index of Γ = 1.63  ±  0.01 (at 1σ c.l.), and the X-ray luminosity was (2.16  ±  0.04)  ×  1034 erg s−1 for a distance of 4 kpc. Based on observations with different instruments, the X-ray luminosity has remained relatively steady over the past ∼15 years. J1109 is spatially associated with the gamma-ray source FL8Y J1109.8−6500, which was detected with Fermi at an average luminosity of (1.5  ±  0.2)  ×  1034 erg s−1 (assuming the distance of J1109) over the 0.1–300 GeV energy band between 2008 and 2016. The source was undetected during ATCA radio observations that were simultaneous with NuSTAR, down to a 3σ flux upper limit of 18 μJy beam−1 (at 7.25 GHz). We show that the phenomenological properties of J1109 point to a binary transitional pulsar candidate currently in a sub-luminous accretion disk state, and that the upper limits derived for the radio emission are consistent with the expected radio luminosity for accreting neutron stars at similar X-ray luminosities.


2020 ◽  
Vol 495 (1) ◽  
pp. 365-374 ◽  
Author(s):  
M Chernyakova ◽  
D Malyshev ◽  
P Blay ◽  
B van Soelen ◽  
S Tsygankov

ABSTRACT PSR J2032+4127 is only the second known gamma-ray binary where it is confirmed that a young radio pulsar is in orbit around a Be-star. The interaction of the pulsar wind with the mass outflow from the companion leads to broad-band emission from radio up to TeV energies. In this paper we present results of optical monitoring of the 2017 periastron passage with the Nordic Optical Telescope. These observations are complemented by X-ray (Swift/XRT, NuSTAR) and GeV (Fermi/LAT) monitoring. Joint analysis of the evolution of the parameters of the H α line and the broad-band (X-ray to TeV) spectral shape allows us to propose a model linking the observed emission to the interaction of the pulsar and Be-star winds under the assumption of the inclined disc geometry. Our model allows the observed flux and spectral evolution of the system to be explained in a self-consistent way.


2020 ◽  
Vol 496 (2) ◽  
pp. 2213-2229 ◽  
Author(s):  
F D’Ammando

ABSTRACT We report the analysis of all Swift observations available up to 2019 April of γ-ray-emitting narrow-line Seyfert 1 galaxies (NLSy1). The distribution of X-ray luminosities (and fluxes) indicates that the jet radiation significantly contributes to their X-ray emission, with Doppler boosting making values higher than other radio-loud NLSy1. The 0.3–10 keV photon indices are on average harder with respect to radio-quiet and radio-loud NLSy1, confirming a dominant jet contribution in X-rays. However, the lower variability amplitude with respect to blazars and the softening of the spectrum in some periods suggests that also the corona radiation contributes to the X-ray emission. In optical and ultraviolet (UV) significant flux changes have been observed on daily, weekly, and monthly time-scale, providing a clear indication of the significant contribution of the jet radiation in this part of spectrum. A strong correlation between X-ray, UV, and optical emission and simultaneous flux variations have been observed in 1H 0323+342, SBS 0846+513, PMN J0948+0022 as expected in case the jet radiation is the dominant mechanism. Correlated multiband variability favours the jet-dominated scenario also in FBQS J1644+2619 and PKS 2004−447. The summed X-ray Telescope spectra of 1H 0323+342, SBS 0846+513, PMN J0948+0022, and FBQS J1644+2619 are well fitted by a broken power law with a break around 2 keV. The spectrum above 2 keV is dominated by the non-thermal emission from a beamed relativistic jet, as suggested by the hard photon index. A Seyfert-like feature like the soft X-ray excess has been observed below 2 keV, making these γ-ray-emitting NLSy1 different from typical blazars.


2008 ◽  
Vol 17 (09) ◽  
pp. 1343-1349 ◽  
Author(s):  
S. D. VERGANI ◽  
D. MALESANI ◽  
E. MOLINARI

We present observations of the early afterglow emission of GRB 060418. Thanks to the simultaneous coverage at optical, X-ray and gamma-ray wavelengths, we can detect and separate the external shock emission (visible in the optical and late X-ray data) and the central engine activity (early X and gamma rays). The two components are clearly distinguished based on temporal and spectral properties. The detection of the afterglow onset (in the optical) allows the determination of the fundamental fireball properties, namely its bulk Lorentz factor and total energy. The early time X-ray flare closely resembles the prompt emission gamma-ray pulses in its temporal profile, being wider at low energies and showing lags between the hard and soft bands. This provides a strong suggestion that X-ray flares are a continuation of the prompt emission.


1991 ◽  
Vol 378 ◽  
pp. L17 ◽  
Author(s):  
R. D. Rogers ◽  
G. B. Field
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document