scholarly journals Constructing a multivariate distribution function with a vine copula: towards multivariate luminosity and mass functions

2020 ◽  
Vol 498 (3) ◽  
pp. 4365-4378
Author(s):  
Tsutomu T Takeuchi ◽  
Kai T Kono

ABSTRACT The need for a method to construct multidimensional distribution function is increasing recently, in the era of huge multiwavelength surveys. We have proposed a systematic method to build a bivariate luminosity or mass function of galaxies by using a copula. It allows us to construct a distribution function when only its marginal distributions are known, and we have to estimate the dependence structure from data. A typical example is the situation that we have univariate luminosity functions at some wavelengths for a survey, but the joint distribution is unknown. Main limitation of the copula method is that it is not easy to extend a joint function to higher dimensions (d > 2), except some special cases like multidimensional Gaussian. Even if we find such a multivariate analytic function in some fortunate case, it would often be inflexible and impractical. In this work, we show a systematic method to extend the copula method to unlimitedly higher dimensions by a vine copula. This is based on the pair-copula decomposition of a general multivariate distribution. We show how the vine copula construction is flexible and extendable. We also present an example of the construction of a stellar mass–atomic gas–molecular gas three-dimensional mass function. We demonstrate the maximum likelihood estimation of the best functional form for this function, as well as a proper model selection via vine copula.

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 559
Author(s):  
Zinoviy Landsman ◽  
Tomer Shushi

The class of log-elliptical distributions is well used and studied in risk measurement and actuarial science. The reason is that risks are often skewed and positive when they describe pure risks, i.e., risks in which there is no possibility of profit. In practice, risk managers confront a system of mutually dependent risks, not only one risk. Thus, it is important to measure risks while capturing their dependence structure. In this short paper, we compute the multivariate risk measures, multivariate tail conditional expectation, and multivariate tail covariance measure for the family of log-elliptical distributions, which captures the dependence structure of the risks while focusing on the tail of their distributions, i.e., on extreme loss events. We then study our result and examine special cases, as well as the optimal portfolio selection using such measures. Finally, we show how the given multivariate tail moments can also be computed for log-skew elliptical models based on similar approaches given for the log-elliptical case.


1996 ◽  
Vol 26 (2) ◽  
pp. 213-224 ◽  
Author(s):  
Karl-Heinz Waldmann

AbstractRecursions are derived for a class of compound distributions having a claim frequency distribution of the well known (a,b)-type. The probability mass function on which the recursions are usually based is replaced by the distribution function in order to obtain increasing iterates. A monotone transformation is suggested to avoid an underflow in the initial stages of the iteration. The faster increase of the transformed iterates is diminished by use of a scaling function. Further, an adaptive weighting depending on the initial value and the increase of the iterates is derived. It enables us to manage an arbitrary large portfolio. Some numerical results are displayed demonstrating the efficiency of the different methods. The computation of the stop-loss premiums using these methods are indicated. Finally, related iteration schemes based on the cumulative distribution function are outlined.


2020 ◽  
Author(s):  
Kuk-Hyun Ahn

Abstract. Reliable estimates of missing streamflow values are relevant for water resources planning and management. This study proposes a multiple dependence condition model via vine copulas for the purpose of estimating streamflow at partially gaged sites. The proposed model is attractive in modeling the high dimensional joint distribution by building a hierarchy of conditional bivariate copulas when provided a complex streamflow gage network. The usefulness of the proposed model is firstly highlighted using a synthetic streamflow scenario. In this analysis, the bivariate copula model and a variant of the vine copulas are also employed to show the ability of the multiple dependence structure adopted in the proposed model. Furthermore, the evaluations are extended to a case study of 54 gages located within the Yadkin-Pee Dee River Basin, the eastern U. S. Both results inform that the proposed model is better suited for infilling missing values. After that, the performance of the vine copula is compared with six other infilling approaches to confirm its applicability. Results demonstrate that the proposed model produces more reliable streamflow estimates than the other approaches. In particular, when applied to partially gaged sites with sufficient available data, the proposed model clearly outperforms the other models. Even though the model is illustrated by a specific case, it can be extended to other regions with diverse hydro-climatological variables for the objective of infilling.


2007 ◽  
Author(s):  
Αριστείδης Νικολουλόπουλος

Studying associations among multivariate outcomes is an interesting problem in statistical science. The dependence between random variables is completely described by their multivariate distribution. When the multivariate distribution has a simple form, standard methods can be used to make inference. On the other hand one may create multivariate distributions based on particular assumptions, limiting thus their use. Unfortunately, these limitations occur very often when working with multivariate discrete distributions. Some multivariate discrete distributions used in practice can have only certain properties, as for example they allow only for positive dependence or they can have marginal distributions of a given form. To solve this problem copulas seem to be a promising solution. Copulas are a currently fashionable way to model multivariate data as they account for the dependence structure and provide a flexible representation of the multivariate distribution. Furthermore, for copulas the dependence properties can be separated from their marginal properties and multivariate models with marginal densities of arbitrary form can be constructed, allowing a wide range of possible association structures. In fact they allow for flexible dependence modelling, different from assuming simple linear correlation structures. However, in the application of copulas to discrete data marginal parameters affect dependence structure, too, and, hence the dependence properties are not fully separated from the marginal properties. Introducing covariates to describe the dependence by modelling the copula parameters is of special interest in this thesis. Thus, covariate information can describe the dependence either indirectly through the marginalparameters or directly through the parameters of the copula . We examine the case when the covariates are used both in marginal and/or copula parameters aiming at creating a highly flexible model producing very elegant dependence structures. Furthermore, the literature contains many theoretical results and families of copulas with several properties but there are few papers that compare the copula families and discuss model selection issues among candidate copula models rendering the question of which copulas are appropriate and whether we are able, from real data, to select the true copula that generated the data, among a series of candidates with, perhaps, very similar dependence properties. We examined a large set of candidate copula families taking intoaccount properties like concordance and tail dependence. The comparison is made theoretically using Kullback-Leibler distances between them. We have selected this distance because it has a nice relationship with log-likelihood and thus it can provide interesting insight on the likelihood based procedures used in practice. Furthermore a goodness of fit test based on Mahalanobisdistance, which is computed through parametric bootstrap, will be provided. Moreover we adopt a model averaging approach on copula modelling, based on the non-parametric bootstrap. Our intention is not to underestimate variability but add some additional variability induced by model selection making the precision of the estimate unconditional on the selected model. Moreover our estimates are synthesize from several different candidate copula models and thus they can have a flexible dependence structure. Taking under consideration the extended literature of copula for multivariate continuous data we concentrated our interest on fitting copulas on multivariate discrete data. The applications of multivariate copula models for discrete data are limited. Usually we have to trade off between models with limited dependence (e.g. only positive association) and models with flexible dependence but computational intractabilities. For example, the elliptical copulas provide a wide range of flexible dependence, but do not have closed form cumulative distribution functions. Thus one needs to evaluate the multivariate copula and, hence, a multivariate integral repeatedly for a large number of times. This can be time consuming but also, because of the numerical approach used to evaluate a multivariate integral, it may produce roundoff errors. On the other hand, multivariate Archimedean copulas, partially-symmetric m-variate copulas with m − 1 dependence parameters and copulas that are mixtures of max-infinitely divisible bivariate copulas have closed form cumulative distribution functions and thus computations are easy, but allow only positive dependence among the random variables. The bridge of the two above-mentioned problems might be the definition of a copula family which has simple form for its distribution function while allowing for negative dependence among the variables. We define such a multivariate copula family exploiting the use of finite mixture of simple uncorrelated normal distributions. Since the correlation vanishes, the cumulative distribution is simply the product of univariate normal cumulative distribution functions. The mixing operation introduces dependence. Hence we obtain a kind of flexible dependence, and allow for negative dependence.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10285
Author(s):  
Hafiza Mamona Nazir ◽  
Ijaz Hussain ◽  
Muhammad Faisal ◽  
Alaa Mohamd Shoukry ◽  
Mohammed Abdel Wahab Sharkawy ◽  
...  

Several data-driven and hybrid models are univariate and not considered the dependance structure of multivariate random variables, especially the multi-site river inflow data, which requires the joint distribution of the same river basin system. In this paper, we proposed a Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Vine copula-based approach to address this issue. The proposed hybrid model comprised on two stages: In the first stage, the CEEMDAN is used to extract the high dimensional multi-scale features. Further, the multiple models are used to predict multi-scale components and residuals. In the second stage, the residuals obtained from the first stage are used to model the joint uncertainty of multi-site river inflow data by using Canonical Vine. For the application of the proposed two-step architecture, daily river inflow data of the Indus River Basin is used. The proposed two-stage methodology is compared with only the first stage proposed model, Vector Autoregressive and copula-based Autoregressive Integrated Moving Average models. The four evaluation measures, that is, Mean Absolute Relative Error (MARE), Mean Absolute Deviation (MAD), Nash-Sutcliffe Efficiency (NSE) and Mean Square Error (MSE), are used to observe the prediction performance. The results demonstrated that the proposed model outperforms significantly with minimum MARE, MAD, NSE, and MSE for two case studies having significant joint dependance. Therefore, it is concluded that the prediction can be improved by appropriately modeling the dependance structure of the multi-site river inflow data.


2000 ◽  
Vol 37 (04) ◽  
pp. 925-935 ◽  
Author(s):  
Georgios Skoulakis

We study a reliability system subject to shocks generated by a renewal point process. When a shock occurs, components fail independently of each other with equal probabilities that are random numbers drawn from a distribution that may differ from shock to shock. We first consider the case of a parallel system and derive closed expressions for the Laplace-Stieltjes transform and the expectation of the time to system failure and for its density in the case that the distribution function of the renewal process possesses a density. We then treat a more general system structure, which has some very important special cases, such as k-out-of-n:F systems, and derive analogous formulae.


2021 ◽  
Author(s):  
Georgia Lazoglou ◽  
George Zittis ◽  
Panos Hadjinicolaou ◽  
Jos Lelieveld

<p>Over the last decades, the use of climate models in the projection and assessment of future climate conditions, both on global and regional scales, has become common practice. However, inevitable biases between the simulated model output and observed conditions remain, mainly due to the variable nature of the atmospheric system, and limitations in representing sub-grid-scale processes that need to be parameterized. The present study aims to test a new approach for increasing the accuracy of daily climate model output. We apply the recently introduced TIN-Copula statistical method to the results of a state-of-the-art global Earth System Model (Hadley Centre Global Environmental Model version 3 - HadGEM3). The TIN-Copula approach is a combination of Triangular Irregular Networks and Copulas that focuses on modeling the whole dependence structure of the studied variables. The study area of the current application is the Middle East and North Africa (MENA) region, a prominent global climate change hot-spot. Considering the lack of accurate and consistent observational records in the MENA, we used the ERA5 reanalysis dataset as a reference. The results of the study reveal that the TIN-Copula method significantly improves the simulation of maximum temperature, both on annual and seasonal time scales. Specifically, the HadGEM3 model tends to overestimate the ERA5 temperature data in the major part of the MENA region. This overestimation is mainly evident for the lower values of the studied data sets during all seasons, while in summer the overestimation is found in the whole data set. However, after the use the TIN-Copula method, the differences between the simulated maximum temperature and the ERA5 data were minimized in more than the 85% of the studied grids.</p>


1974 ◽  
Vol 11 (03) ◽  
pp. 605-608 ◽  
Author(s):  
J. S. Huang

Let X 1,n ≦ … ≦ Xn, n be the order statistics of a sample of size n from a distribution function F. Desu (1971) showed that if for all n ≧ 2, nX 1,n is identically distributed as X 1, 1, then F is the exponential distribution (or else F degenerates). The purpose of this note is to point out that special cases of known characterization theorems already constitute an improvement over this result. We show that the characterization is preserved if “identically distributed” is weakened to “having identical (finite) expectation”, and “for all n ≧ 2” is weakened to “for a sequence of n's with divergent sum of reciprocals”.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaofei Wu ◽  
Shuzhen Zhu ◽  
Suxue Wang

This paper studies the dependence structure and information spillover effect between the RMB exchange rate and the Chinese stock market based on the R-vine copula model and spillover index model. The results show that due to the occurrence of the trade war, the correlation between the three RMB exchange rate indicators and the two stock market indicators increases in varying degrees. In the intensity of spillover, the information spillover of the stock market to the RMB exchange rate is significantly enhanced, and the information spillover intensity of the RMB Index to the stock market increases, but the information spillover of the US dollar and Hong Kong dollar exchange rates to the stock market is significantly weakened. In the direction of spillover, the spillover of the RMB Index and stock market shows the characteristics of alternating transformation, while the exchange rate of a single currency and the stock market shows a one-way transmission from the stock market to the exchange rate. Additionally, the information spillover between the RMB exchange rate and the stock market is closely related to the degree of market openness. The RMB Index contains more information than the exchange rate of a single currency.


Sign in / Sign up

Export Citation Format

Share Document