scholarly journals Nuclear burning in collapsar accretion discs

2020 ◽  
Vol 499 (3) ◽  
pp. 4097-4113 ◽  
Author(s):  
Yossef Zenati ◽  
Daniel M Siegel ◽  
Brian D Metzger ◽  
Hagai B Perets

ABSTRACT The core collapse of massive, rapidly-rotating stars are thought to be the progenitors of long-duration gamma-ray bursts (GRB) and their associated hyperenergetic supernovae (SNe). At early times after the collapse, relatively low angular momentum material from the infalling stellar envelope will circularize into an accretion disc located just outside the black hole horizon, resulting in high accretion rates necessary to power a GRB jet. Temperatures in the disc mid-plane at these small radii are sufficiently high to dissociate nuclei, while outflows from the disc can be neutron-rich and may synthesize r-process nuclei. However, at later times, and for high progenitor angular momentum, the outer layers of the stellar envelope can circularize at larger radii ≳ 107 cm, where nuclear reactions can take place in the disc mid-plane (e.g. 4He + 16O → 20Ne + γ). Here we explore the effects of nuclear burning on collapsar accretion discs and their outflows by means of hydrodynamical α-viscosity torus simulations coupled to a 19-isotope nuclear reaction network, which are designed to mimic the late infall epochs in collapsar evolution when the viscous time of the torus has become comparable to the envelope fall-back time. Our results address several key questions, such as the conditions for quiescent burning and accretion versus detonation and the generation of 56Ni in disc outflows, which we show could contribute significantly to powering GRB SNe. Being located in the slowest, innermost layers of the ejecta, the latter could provide the radioactive heating source necessary to make the spectral signatures of r-process elements visible in late-time GRB-SNe spectra.

2013 ◽  
Vol 22 (10) ◽  
pp. 1330022 ◽  
Author(s):  
KO NAKAMURA ◽  
TOSHITAKA KAJINO ◽  
GRANT J. MATHEWS ◽  
SUSUMU SATO ◽  
SEIJI HARIKAE

The collapsar scenario for long-duration gamma ray bursts (GRBs) has been proposed as a possible astrophysical site for r-process nucleosynthesis. We summarize the status of r-process nucleosynthesis calculations of our group and others in the context of a magnetohydrodynamics + neutrino-heated collapsar model. In the simulations of our group, we begin with a relativistic magnetohydrodynamic model including ray-tracing neutrino transport to describe the development of the black hole accretion disk and the neutrino heating of the funnel region above the black hole. The late-time evolution of the associated jet was then followed using axisymmetric special relativistic hydrodynamics. We utilized representative test particles to follow the temperature, entropy, electron fraction and density for material flowing within the jet from ejection from the accretion disk until several thousand kilometer above the black hole as temperatures fall from 9×109 to 3×108 K. The evolution of nuclear abundances from nucleons to heavy nuclei for ejected test particle trajectories has been solved in a large nuclear reaction network. It was found that an r-process-like abundance distribution forms in material ejected in the collapsar jet.


2019 ◽  
Vol 485 (3) ◽  
pp. 4404-4412 ◽  
Author(s):  
D Desai ◽  
B D Metzger ◽  
F Foucart

ABSTRACT Mergers of compact binaries containing two neutron stars (NS–NS), or a neutron star and a stellar mass black hole (NS–BH), are likely progenitors of short-duration gamma-ray bursts (SGRBs). A fraction ${\gtrsim } 20{{\ \rm per\ cent}}$ of SGRBs is followed by temporally extended (≳minute-long), variable X-ray emission, attributed to ongoing activity of the central engine. One source of late-time engine activity is fall-back accretion of bound tidal ejecta; however, observed extended emission light curves do not track the naively anticipated, uninterrupted t−5/3 power-law decay, instead showing a lull or gap in emission typically lasting tens of seconds after the burst. Here, we re-examine the impact of heating due to rapid neutron capture (r-process) nucleosynthesis on the rate of the fall-back accretion, using ejecta properties extracted from numerical relativity simulations of NS–BH mergers. Heating by the r-process has its greatest impact on marginally bound matter, hence its relevance to late-time fall-back. Depending on the electron fraction of the ejecta and the mass of the remnant black hole, r-process heating can imprint a range of fall-back behaviour, ranging from temporal gaps of up to tens of seconds to complete late-time cut-off in the accretion rate. This behaviour is robust to realistic variations in the nuclear heating experienced by different parts of the ejecta. Central black holes with masses ${\lesssim } 3\, \mathrm{M}_{\odot }$ typically experience absolute cut-offs in the fall-back rate, while more massive ${\gtrsim } 6\!-\!8\, \mathrm{M}_{\odot }$ black holes instead show temporal gaps. We thus propose that SGRBs showing extended X-ray emission arise from NS–BH, rather than NS–NS, mergers. Our model implies an NS–BH merger detection rate by LIGO that, in steady state, is comparable to or greater than that of NS–NS mergers.


2019 ◽  
Vol 491 (3) ◽  
pp. 3479-3495 ◽  
Author(s):  
A A Chrimes ◽  
E R Stanway ◽  
J J Eldridge

ABSTRACT Long-duration gamma-ray bursts (GRBs) are understood to be the final fate for a subset of massive, stripped envelope, rapidly rotating stars. Beyond this, our knowledge of the progenitor systems is limited. Using the Binary Population and Spectral Synthesis (bpass) stellar evolution models, we investigate the possibility that some massive stars in binaries can maintain the angular momentum required for jet production, while still loosing their outer envelope through winds or binary interactions. We find that a total hydrogen mass of MH < 5 × 10−4 M⊙ and a helium ejecta mass fraction of FHe < 0.20 provide the best thresholds for the supernova type II/Ibc and Ib/Ic divisions, respectively. Tidal interactions in binaries are accounted for by applying a tidal algorithm to post-process the stellar evolution models output by bpass. We show that the observed volumetric GRB rate evolution can be recreated using two distinct pathways and plausible distributions for burst parameters. In the first pathway, stars are spun up by mass accretion into a quasi-homogeneous state. In the second, tides maintain rotation where otherwise the star would spin-down. Both lead to type Ic supernova progenitors, and a metallicity distribution consistent with the GRB host galaxy population. The inferred core angular momentum threshold for jet production is consistent with theoretical requirements for collapsars, given the assumptions made in our model. We can therefore reproduce several aspects of core-collapse supernova/GRB observation and theory simultaneously. We discuss the predicted observable properties of GRB progenitors and their surviving companions.


2011 ◽  
Vol 7 (S279) ◽  
pp. 365-366 ◽  
Author(s):  
K. Nakamura ◽  
T. Takiwaki ◽  
K. Kotake ◽  
N. Nishimura

AbstractWe have investigated the revival of a shock wave by nuclear burning reactions at the central region of core-collapse supernovae. For this purpose, we performed hydrodynamic simulations of core collapse and bounce for 15 M⊙ progenitor model, using ZEUS-MP code in axi-symmetric coordinates. Our numerical code is equipped with a simple nuclear reaction network including 13 α nuclei form 4He to 56Ni, and accounting for energy feedback from nuclear reactions as well as neutrino heating and cooling. We found that the energy released by nuclear reactions is significantly helpful in accelerating shock waves and is able to produce energetic explosion even if the input neutrino luminosity is low.


1976 ◽  
Vol 32 ◽  
pp. 169-182
Author(s):  
B. Kuchowicz

SummaryIsotopic shifts in the lines of the heavy elements in Ap stars, and the characteristic abundance pattern of these elements point to the fact that we are observing mainly the products of rapid neutron capture. The peculiar A stars may be treated as the show windows for the products of a recent r-process in their neighbourhood. This process can be located either in Supernovae exploding in a binary system in which the present Ap stars were secondaries, or in Supernovae exploding in young clusters. Secondary processes, e.g. spontaneous fission or nuclear reactions with highly abundant fission products, may occur further with the r-processed material in the surface of the Ap stars. The role of these stars to the theory of nucleosynthesis and to nuclear physics is emphasized.


Author(s):  
Stephan Rosswog

Compact object mergers eject neutron-rich matter in a number of ways: by the dynamical ejection mediated by gravitational torques, as neutrino-driven winds, and probably also a good fraction of the resulting accretion disc finally becomes unbound by a combination of viscous and nuclear processes. If compact binary mergers indeed produce gamma-ray bursts, there should also be an interaction region where an ultra-relativistic outflow interacts with the neutrino-driven wind and produces moderately relativistic ejecta. Each type of ejecta has different physical properties, and therefore plays a different role for nucleosynthesis and for the electromagnetic (EM) transients that go along with compact object encounters. Here, we focus on the dynamic ejecta and present results for over 30 hydrodynamical simulations of both gravitational wave-driven mergers and parabolic encounters as they may occur in globular clusters. We find that mergers eject approximately 1 per cent of a Solar mass of extremely neutron-rich material. The exact amount, as well as the ejection velocity, depends on the involved masses with asymmetric systems ejecting more material at higher velocities. This material undergoes a robust r-process and both ejecta amount and abundance pattern are consistent with neutron star mergers being a major source of the ‘heavy’ ( A >130) r-process isotopes. Parabolic collisions, especially those between neutron stars and black holes, eject substantially larger amounts of mass, and therefore cannot occur frequently without overproducing gala- ctic r-process matter. We also discuss the EM transients that are powered by radioactive decays within the ejecta (‘macronovae’), and the radio flares that emerge when the ejecta dissipate their large kinetic energies in the ambient medium.


2016 ◽  
Vol 463 (1) ◽  
pp. 245-250 ◽  
Author(s):  
Da-Bin Lin ◽  
Zu-Jia Lu ◽  
Hui-Jun Mu ◽  
Tong Liu ◽  
Shu-Jin Hou ◽  
...  

1961 ◽  
Vol 122 (1) ◽  
pp. 212-217 ◽  
Author(s):  
E. S. Troubetzkoy

Sign in / Sign up

Export Citation Format

Share Document