scholarly journals Joint gas and stellar dynamical models of WLM: an isolated dwarf galaxy within a cored, prolate DM halo

2020 ◽  
Vol 500 (1) ◽  
pp. 410-429
Author(s):  
Gigi Y C Leung ◽  
Ryan Leaman ◽  
Giuseppina Battaglia ◽  
Glenn van de Ven ◽  
Alyson M Brooks ◽  
...  

ABSTRACT We present multitracer dynamical models of the low-mass (M* ∼ 107), isolated dwarf irregular galaxy WLM in order to simultaneously constrain the inner slope of the dark matter (DM) halo density profile (γ) and flattening (qDM), and the stellar orbital anisotropy (βz, βr). For the first time, we show how jointly constraining the mass distribution from the H i gas rotation curve and solving the Jeans equations with discrete stellar kinematics lead to a factor of ∼2 reduction in the uncertainties on γ. The mass-anisotropy degeneracy is also partially broken, leading to reductions on uncertainty by ${\sim} 30{{\ \rm per\ cent}}$ on Mvir (and ${\sim} 70{{\ \rm per\ cent}}$ at the half-light radius) and ${\sim} 25{{\ \rm per\ cent}}$ on anisotropy. Our inferred value of γ = 0.3 ± 0.1 is robust to the halo geometry, and in excellent agreement with predictions of stellar feedback-driven DM core creation. The derived prolate geometry of the DM halo with qDM = 2 ± 1 is consistent with Lambda cold dark matter simulations of dwarf galaxy haloes. While self-interacting DM (SIDM) models with σ/mX ∼ 0.6 can reproduce this cored DM profile, the interaction events may sphericalize the halo. The simultaneously cored and prolate DM halo may therefore present a challenge for SIDM. Finally, we find that the radial profile of stellar anisotropy in WLM (βr) follows a nearly identical trend of increasing tangential anisotropy to the classical dwarf spheroidals, Fornax and Sculptor. Given WLM’s orbital history, this result may call into question whether such anisotropy is a consequence of tidal stripping in only one pericentric passage or if it instead is a feature of the largely self-similar formation and evolutionary pathways for some dwarf galaxies.

2019 ◽  
Vol 492 (2) ◽  
pp. 3047-3059 ◽  
Author(s):  
J-W Hsueh ◽  
W Enzi ◽  
S Vegetti ◽  
M W Auger ◽  
C D Fassnacht ◽  
...  

ABSTRACT We present an analysis of seven strongly gravitationally lensed quasars and the corresponding constraints on the properties of dark matter. Our results are derived by modelling the lensed image positions and flux-ratios using a combination of smooth macro-models and a population of low-mass haloes within the mass range of 106–109 M⊙. Our lens models explicitly include higher order complexity in the form of stellar discs and luminous satellites, as well as low-mass haloes located along the observed lines of sight for the first time. Assuming a cold dark matter (CDM) cosmology, we infer an average total mass fraction in substructure of $f_{\rm sub} = 0.012^{+0.007}_{-0.004}$ (68 per cent confidence limits), which is in agreement with the predictions from CDM hydrodynamical simulations to within 1σ. This result is closer to the predictions than those from previous studies that did not include line-of-sight haloes. Under the assumption of a thermal relic dark matter model, we derive a lower limit on the particle relic mass of mth > 5.58 keV (95 per cent confidence limits), which is consistent with a value of mth > 5.3 keV from the recent analysis of the Ly α forest. We also identify two main sources of possible systematic errors and conclude that deeper investigations in the complex structure of lens galaxies as well as the size of the background sources should be a priority for this field.


2020 ◽  
Vol 492 (4) ◽  
pp. 5218-5225
Author(s):  
Pierre Boldrini ◽  
Yohei Miki ◽  
Alexander Y Wagner ◽  
Roya Mohayaee ◽  
Joseph Silk ◽  
...  

ABSTRACT We performed a series of high-resolution N-body simulations to examine whether dark matter candidates in the form of primordial black holes (PBHs) can solve the cusp–core problem in low-mass dwarf galaxies. If some fraction of the dark matter in low-mass dwarf galaxies consists of PBHs and the rest is cold dark matter, dynamical heating of the cold dark matter by the PBHs induces a cusp-to-core transition in the total dark matter profile. The mechanism works for PBHs in the 25–100 M⊙ mass window, consistent with the Laser Interferometer Gravitational-Wave Observatory (LIGO) detections, but requires a lower limit on the PBH mass fraction of 1 ${{\rm per\ cent}}$ of the total dwarf galaxy dark matter content. The cusp-to-core transition time-scale is between 1 and 8 Gyr. This time-scale is also a constant multiple of the relaxation time between cold dark matter particles and PBHs, which depends on the mass, the mass fraction, and the scale radius of the initial density profile of PBHs. We conclude that dark matter cores occur naturally in haloes composed of cold dark matter and PBHs, without the need to invoke baryonic processes.


2020 ◽  
Vol 499 (4) ◽  
pp. 5932-5940
Author(s):  
C Yamila Yaryura ◽  
Mario G Abadi ◽  
Stefan Gottlöber ◽  
Noam I Libeskind ◽  
Sofía A Cora ◽  
...  

ABSTRACT Associations of dwarf galaxies are loose systems composed exclusively of dwarf galaxies. These systems were identified in the Local Volume for the first time more than 30 yr ago. We study these systems in the cosmological framework of the Λ cold dark matter (ΛCDM) model. We consider the Small MultiDark Planck simulation and populate its dark matter haloes by applying the semi-analytic model of galaxy formation SAG. We identify galaxy systems using a friends-of-friends algorithm with a linking length equal to $b=0.4 \, {\rm Mpc}\, h^{-1}$ to reproduce the size of dwarf galaxy associations detected in the Local Volume. Our samples of dwarf systems are built up removing those systems that have one or more galaxies with stellar mass larger than a maximum threshold Mmax. We analyse three different samples defined by ${\rm log}_{10}(M_{\rm max}[{\rm M}_{\odot }\, h^{-1}]) = 8.5, 9.0$, and 9.5. On average, our systems have typical sizes of $\sim 0.2\, {\rm Mpc}\, h^{-1}$, velocity dispersion of $\sim 30 {\rm km\, s^{-1}}$, and estimated total mass of $\sim 10^{11} {\rm M}_{\odot }\, h^{-1}$. Such large typical sizes suggest that individual members of a given dwarf association reside in different dark matter haloes and are generally not substructures of any other halo. Indeed, in more than 90 per cent of our dwarf systems their individual members inhabit different dark matter haloes, while only in the remaining 10 per cent members do reside in the same halo. Our results indicate that the ΛCDM model can naturally reproduce the existence and properties of dwarf galaxies’ associations without much difficulty.


2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


2020 ◽  
Vol 499 (2) ◽  
pp. 2648-2661
Author(s):  
Aaron A Dutton ◽  
Tobias Buck ◽  
Andrea V Macciò ◽  
Keri L Dixon ◽  
Marvin Blank ◽  
...  

ABSTRACT We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the response of cold dark matter (CDM) haloes to baryonic processes. Previous work has shown that the halo response is primarily a function of the ratio between galaxy stellar mass and total virial mass, and the density threshold above which gas is eligible to form stars, n[cm−3]. At low n all simulations in the literature agree that dwarf galaxy haloes are cuspy, but at high n ≳ 100 there is no consensus. We trace halo contraction in dwarf galaxies with n ≳ 100 reported in some previous simulations to insufficient spatial resolution. Provided the adopted star formation threshold is appropriate for the resolution of the simulation, we show that the halo response is remarkably stable for n ≳ 5, up to the highest star formation threshold that we test, n = 500. This free parameter can be calibrated using the observed clustering of young stars. Simulations with low thresholds n ≤ 1 predict clustering that is too weak, while simulations with high star formation thresholds n ≳ 5, are consistent with the observed clustering. Finally, we test the CDM predictions against the circular velocities of nearby dwarf galaxies. Low thresholds predict velocities that are too high, while simulations with n ∼ 10 provide a good match to the observations. We thus conclude that the CDM model provides a good description of the structure of galaxies on kpc scales provided the effects of baryons are properly captured.


2021 ◽  
Vol 504 (1) ◽  
pp. 648-653
Author(s):  
Nilanjan Banik ◽  
Jo Bovy

ABSTRACT Stellar tidal streams are sensitive tracers of the properties of the gravitational potential in which they orbit and detailed observations of their density structure can be used to place stringent constraints on fluctuations in the potential caused by, e.g. the expected populations of dark matter subhaloes in the standard cold dark matter (CDM) paradigm. Simulations of the evolution of stellar streams in live N-body haloes without low-mass dark matter subhaloes, however, indicate that streams exhibit significant perturbations on small scales even in the absence of substructure. Here, we demonstrate, using high-resolution N-body simulations combined with sophisticated semi-analytical and simple analytical models, that the mass resolutions of 104–$10^5\, \rm {M}_{\odot }$ commonly used to perform such simulations cause spurious stream density variations with a similar magnitude on large scales as those expected from a CDM-like subhalo population and an order of magnitude larger on small, yet observable, scales. We estimate that mass resolutions of ${\approx}100\, \rm {M}_{\odot }$ (${\approx}1\, \rm {M}_{\odot }$) are necessary for spurious, numerical density variations to be well below the CDM subhalo expectation on large (small) scales. That streams are sensitive to a simulation’s particle mass down to such small masses indicates that streams are sensitive to dark matter clustering down to these low masses if a significant fraction of the dark matter is clustered or concentrated in this way, for example, in MACHO models with masses of 10–$100\, \rm {M}_{\odot }$.


2020 ◽  
Vol 494 (4) ◽  
pp. 4706-4712 ◽  
Author(s):  
Andrew Robertson ◽  
Richard Massey ◽  
Vincent Eke

ABSTRACT We assess a claim that observed galaxy clusters with mass ${\sim}10^{14} \mathrm{\, M_\odot }$ are more centrally concentrated than predicted in lambda cold dark matter (ΛCDM). We generate mock strong gravitational lensing observations, taking the lenses from a cosmological hydrodynamical simulation, and analyse them in the same way as the real Universe. The observed and simulated lensing arcs are consistent with one another, with three main effects responsible for the previously claimed inconsistency. First, galaxy clusters containing baryonic matter have higher central densities than their counterparts simulated with only dark matter. Secondly, a sample of clusters selected because of the presence of pronounced gravitational lensing arcs preferentially finds centrally concentrated clusters with large Einstein radii. Thirdly, lensed arcs are usually straighter than critical curves, and the chosen image analysis method (fitting circles through the arcs) overestimates the Einstein radii. After accounting for these three effects, ΛCDM predicts that galaxy clusters should produce giant lensing arcs that match those in the observed Universe.


2020 ◽  
Vol 497 (3) ◽  
pp. 2941-2953 ◽  
Author(s):  
Anchal Saxena ◽  
Suman Majumdar ◽  
Mohd Kamran ◽  
Matteo Viel

ABSTRACT The nature of dark matter sets the timeline for the formation of first collapsed haloes and thus affects the sources of reionization. Here, we consider two different models of dark matter: cold dark matter (CDM) and thermal warm dark matter (WDM), and study how they impact the epoch of reionization (EoR) and its 21-cm observables. Using a suite of simulations, we find that in WDM scenarios, the structure formation on small scales gets suppressed, resulting in a smaller number of low-mass dark matter haloes compared to the CDM scenario. Assuming that the efficiency of sources in producing ionizing photons remains the same, this leads to a lower number of total ionizing photons produced at any given cosmic time, thus causing a delay in the reionization process. We also find visual differences in the neutral hydrogen (H i) topology and in 21-cm maps in case of the WDM compared to the CDM. However, differences in the 21-cm power spectra, at the same neutral fraction, are found to be small. Thus, we focus on the non-Gaussianity in the EoR 21-cm signal, quantified through its bispectrum. We find that the 21-cm bispectra (driven by the H i topology) are significantly different in WDM models compared to the CDM, even for the same mass-averaged neutral fractions. This establishes that the 21-cm bispectrum is a unique and promising way to differentiate between dark matter models, and can be used to constrain the nature of the dark matter in the future EoR observations.


2019 ◽  
Vol 485 (4) ◽  
pp. 5474-5489 ◽  
Author(s):  
Mark R Lovell ◽  
Jesús Zavala ◽  
Mark Vogelsberger

Abstract A cut-off in the linear matter power spectrum at dwarf galaxy scales has been shown to affect the abundance, formation mechanism and age of dwarf haloes, and their galaxies at high and low redshifts. We use hydrodynamical simulations of galaxy formation within the ETHOS framework in a benchmark model that has such a cut-off and that has been shown to be an alternative to the cold dark matter (CDM) model that alleviates its dwarf-scale challenges. We show how galaxies in this model form differently to CDM, on a halo-by-halo basis, at redshifts z ≥ 6. We show that when CDM haloes with masses around the ETHOS half-mode mass scale are resimulated with the ETHOS matter power spectrum, they form with 50 per cent less mass than their CDM counterparts due to their later formation times, yet they retain more of their gas reservoir due to the different behaviour of gas and dark matter during the monolithic collapse of the first haloes in models with a galactic-scale cut-off. As a result, galaxies in ETHOS haloes near the cut-off scale grow rapidly between z = 10 and 6 and by z = 6 end up having very similar stellar masses, higher gas fractions and higher star formation rates relative to their CDM counterparts. We highlight these differences by making predictions for how the number of galaxies with old stellar populations is suppressed in ETHOS for both z = 6 galaxies and for gas-poor Local Group fossil galaxies. Interestingly, we find an age gradient in ETHOS between galaxies that form in high- and low-density environments.


2001 ◽  
Vol 563 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Weihsueh A. Chiu ◽  
Nickolay Y. Gnedin ◽  
Jeremiah P. Ostriker

Sign in / Sign up

Export Citation Format

Share Document