scholarly journals Pairs of giant shock waves (N-waves) in merging galaxy clusters

2020 ◽  
Vol 501 (1) ◽  
pp. 1038-1045
Author(s):  
Congyao Zhang ◽  
Eugene Churazov ◽  
Irina Zhuravleva

ABSTRACT When a subcluster merges with a larger galaxy cluster, a bow shock is driven ahead of the subcluster. At a later merger stage, this bow shock separates from the subcluster, becoming a ‘runaway’ shock that propagates down the steep density gradient through the cluster outskirts and approximately maintains its strength and the Mach number. Such shocks are plausible candidates for producing radio relics in the periphery of clusters. We argue that, during the same merger stage, a secondary shock is formed much closer to the main cluster centre. A close analogue of this structure is known in the usual hydrodynamics as N-waves, where the trailing part of the ‘N’ is the result of the non-linear evolution of a shock. In merging clusters, spherical geometry and stratification could further promote its development. Both the primary and the secondary shocks are the natural outcome of a single merger event and often both components of the pair should be present. However, in the radio band, the leading shock could be more prominent, while the trailing shock might conversely be more easily seen in X-rays. The latter argument implies that for some of the (trailing) shocks found in X-ray data, it might be difficult to identify their ‘partner’ leading shocks or the merging subclusters, which are farther away from the cluster centre. We argue that the Coma cluster and A2744 could be two examples in a post-merger state with such well-separated shock pairs.

2019 ◽  
Vol 621 ◽  
pp. A77 ◽  
Author(s):  
Gayoung Chon ◽  
Hans Böhringer ◽  
Sarthak Dasadia ◽  
Matthias Kluge ◽  
Ming Sun ◽  
...  

The galaxy cluster system RXCJ0225.9-4154 with the two sub-clusters A3016 and A3017 is embedded in a large-scale structure filament with signatures of filamentary accretion. In a Chandra observation of this system at a redshift of z = 0.2195 we detect both clusters in X-rays. In addition we detect a filament of X-ray emission connecting the two clusters and a galaxy group therein. The main cluster, A3017, shows indications of shocks most probably from a recent interaction with cluster components along the filament axis as well as a cold front at about 150 kpc from the cluster centre. The filament between the two clusters is likely to be heated by the accretion shocks of the clusters. We discuss two scenarios for the origin of the X-ray filament between the two clusters. In the first scenario the material of the filament has been ripped off of A3017 during the fly-by of A3016 and is now trailing the latter sub-cluster. Support for this scenario is a gas deficit on the eastern side of A3017. In the second scenario the filament between the two clusters does not come from either of them, but a significant contribution could come from the galaxy group located inside and the entire structure is on its first collapse. We favour the second explanation as the gas mass in the filament seems to be too large to be supplied by the interaction of the two Abell clusters. The paper describes many properties of the components of this cluster merger system that are used to assist the interpretation of the observed configuration.


2002 ◽  
Vol 567 (1) ◽  
pp. L27-L31 ◽  
Author(s):  
M. Markevitch ◽  
A. H. Gonzalez ◽  
L. David ◽  
A. Vikhlinin ◽  
S. Murray ◽  
...  
Keyword(s):  

2019 ◽  
Vol 486 (4) ◽  
pp. 4863-4879 ◽  
Author(s):  
Ali Takey ◽  
Florence Durret ◽  
Isabel Márquez ◽  
Amael Ellien ◽  
Mona Molham ◽  
...  

ABSTRACT We present X-ray and optical properties of the optically confirmed galaxy cluster sample from the 3XMM/SDSS Stripe 82 cluster survey. The sample includes 54 galaxy clusters in the redshift range of 0.05–1.2, with a median redshift of 0.36. We first present the X-ray temperature and luminosity measurements that are used to investigate the X-ray luminosity–temperature relation. The slope and intercept of the relation are consistent with those published in the literature. Then, we investigate the optical properties of the cluster galaxies including their morphological analysis and the galaxy luminosity functions (GLFs). The morphological content of cluster galaxies is investigated as a function of cluster mass and distance from the cluster centre. No strong variation of the fraction of early- and late-type galaxies with cluster mass is observed. The fraction of early-type galaxies as a function of cluster radius varies as expected. The individual GLFs of red sequence galaxies were studied in the five ugriz bands for 48 clusters. The GLFs were then stacked in three mass bins and two redshift bins. Twenty clusters of the present sample are studied for the first time in X-rays, and all are studied for the first time in the optical range. Altogether, our sample appears to have X-ray and optical properties typical of ‘average’ cluster properties.


2019 ◽  
Vol 626 ◽  
pp. A48 ◽  
Author(s):  
M. E. Ramos-Ceja ◽  
F. Pacaud ◽  
T. H. Reiprich ◽  
K. Migkas ◽  
L. Lovisari ◽  
...  

Presently, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function of the ROSAT satellite limits the attainable amount of spatial information for the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher-resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXC J2306.6−1319, ZwCl 1665, and RXC J0034.6−0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample (fX, 500 ≥ 5 × 10−12 erg s−1 cm−2 in the 0.1−2.4 keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually seven, rather than three. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl 1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster–cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected.


2020 ◽  
Vol 636 ◽  
pp. A15 ◽  
Author(s):  
K. Migkas ◽  
G. Schellenberger ◽  
T. H. Reiprich ◽  
F. Pacaud ◽  
M. E. Ramos-Ceja ◽  
...  

The isotropy of the late Universe and consequently of the X-ray galaxy cluster scaling relations is an assumption greatly used in astronomy. However, within the last decade, many studies have reported deviations from isotropy when using various cosmological probes; a definitive conclusion has yet to be made. New, effective and independent methods to robustly test the cosmic isotropy are of crucial importance. In this work, we use such a method. Specifically, we investigate the directional behavior of the X-ray luminosity-temperature (LX–T) relation of galaxy clusters. A tight correlation is known to exist between the luminosity and temperature of the X-ray-emitting intracluster medium of galaxy clusters. While the measured luminosity depends on the underlying cosmology through the luminosity distance DL, the temperature can be determined without any cosmological assumptions. By exploiting this property and the homogeneous sky coverage of X-ray galaxy cluster samples, one can effectively test the isotropy of cosmological parameters over the full extragalactic sky, which is perfectly mirrored in the behavior of the normalization A of the LX–T relation. To do so, we used 313 homogeneously selected X-ray galaxy clusters from the Meta-Catalogue of X-ray detected Clusters of galaxies. We thoroughly performed additional cleaning in the measured parameters and obtain core-excised temperature measurements for all of the 313 clusters. The behavior of the LX–T relation heavily depends on the direction of the sky, which is consistent with previous studies. Strong anisotropies are detected at a ≳4σ confidence level toward the Galactic coordinates (l, b) ∼ (280°, − 20°), which is roughly consistent with the results of other probes, such as Supernovae Ia. Several effects that could potentially explain these strong anisotropies were examined. Such effects are, for example, the X-ray absorption treatment, the effect of galaxy groups and low redshift clusters, core metallicities, and apparent correlations with other cluster properties, but none is able to explain the obtained results. Analyzing 105 bootstrap realizations confirms the large statistical significance of the anisotropic behavior of this sky region. Interestingly, the two cluster samples previously used in the literature for this test appear to have a similar behavior throughout the sky, while being fully independent of each other and of our sample. Combining all three samples results in 842 different galaxy clusters with luminosity and temperature measurements. Performing a joint analysis, the final anisotropy is further intensified (∼5σ), toward (l, b) ∼ (303°, − 27°), which is in very good agreement with other cosmological probes. The maximum variation of DL seems to be ∼16 ± 3% for different regions in the sky. This result demonstrates that X-ray studies that assume perfect isotropy in the properties of galaxy clusters and their scaling relations can produce strongly biased results whether the underlying reason is cosmological or related to X-rays. The identification of the exact nature of these anisotropies is therefore crucial for any statistical cluster physics or cosmology study.


1968 ◽  
Vol 46 (10) ◽  
pp. S409-S413 ◽  
Author(s):  
Walter H. G. Lewin ◽  
George W. Clark ◽  
William B. Smith

A complete X-ray survey of the northern sky has been made in the energy range 20–100 keV. Spectra are given for Cyg X-1 and Tau X-1. Intensity ratios (Cyg X-1/Tau X-1) of 0.84 ± 0.10 and 1.30 ± 0.25 were derived in the 20–70 keV range from data obtained on July 19, 1966 and February 13, 1967, respectively. Observations on Sco X-1 and the Coma cluster show upper limits which are quite different from results reported by other groups.


2021 ◽  
Vol 503 (2) ◽  
pp. 2791-2803
Author(s):  
Swapnil Shankar ◽  
Rishi Khatri

ABSTRACT We present a new method to determine the probability distribution of the 3D shapes of galaxy clusters from the 2D images using stereology. In contrast to the conventional approach of combining different data sets (such as X-rays, Sunyaev–Zeldovich effect, and lensing) to fit a 3D model of a galaxy cluster for each cluster, our method requires only a single data set, such as X-ray observations or Sunyaev–Zeldovich effect observations, consisting of sufficiently large number of clusters. Instead of reconstructing the 3D shape of an individual object, we recover the probability distribution function (PDF) of the 3D shapes of the observed galaxy clusters. The shape PDF is the relevant statistical quantity, which can be compared with the theory and used to test the cosmological models. We apply this method to publicly available Chandra X-ray data of 89 well-resolved galaxy clusters. Assuming ellipsoidal shapes, we find that our sample of galaxy clusters is a mixture of prolate and oblate shapes, with a preference for oblateness with the most probable ratio of principle axes 1.4 : 1.3 : 1. The ellipsoidal assumption is not essential to our approach and our method is directly applicable to non-ellipsoidal shapes. Our method is insensitive to the radial density and temperature profiles of the cluster. Our method is sensitive to the changes in shape of the X-ray emitting gas from inner to outer regions and we find evidence for variation in the 3D shape of the X-ray emitting gas with distance from the centre.


2018 ◽  
Vol 610 ◽  
pp. A82 ◽  
Author(s):  
Maret Einasto ◽  
Boris Deshev ◽  
Heidi Lietzen ◽  
Rain Kipper ◽  
Elmo Tempel ◽  
...  

Context. Superclusters of galaxies provide dynamical environments for the study of the formation and evolution of structures in the cosmic web from galaxies, to the richest galaxy clusters, and superclusters themselves. Aims. We study galaxy populations and search for possible merging substructures in the rich galaxy cluster A2142 in the collapsing core of the supercluster SCl A2142, which may give rise to radio and X-ray structures in the cluster, and affect galaxy properties of this cluster. Methods. We used normal mixture modelling to select substructure of the cluster A2142. We compared alignments of the cluster, its brightest galaxies (hereafter BCGs), subclusters, and supercluster axes. The projected phase space (PPS) diagram and clustercentric distributions are used to analyse the dynamics of the cluster and study the distribution of various galaxy populations in the cluster and subclusters. Results. We find several infalling galaxy groups and subclusters. The cluster, supercluster, BCGs, and one infalling subcluster are all aligned. Their orientation is correlated with the alignment of the radio and X-ray haloes of the cluster. Galaxy populations in the main cluster and in the outskirts subclusters are different. Galaxies in the centre of the main cluster at the clustercentric distances 0.5 h−1 Mpc (Dc∕Rvir < 0.5, Rvir = 0.9 h−1 Mpc) have older stellar populations (with the median age of 10−11 Gyr) than galaxies at larger clustercentric distances. Star-forming and recently quenched galaxies are located mostly at the clustercentric distances Dc ≈ 1.8 h−1 Mpc, where subclusters fall into the cluster and the properties of galaxies change rapidly. In this region the median age of stellar populations of galaxies is about 2 Gyr. Galaxies in A2142 on average have higher stellar masses, lower star formation rates, and redder colours than galaxies in rich groups. The total mass in infalling groups and subclusters is M ≈ 6 × 1014 h−1 M⊙, that is approximately half of the mass of the cluster. This mass is sufficient for the mass growth of the cluster from redshift z = 0.5 (half-mass epoch) to the present. Conclusions. Our analysis suggests that the cluster A2142 has formed as a result of past and present mergers and infallen groups, predominantly along the supercluster axis. Mergers cause complex radio and X-ray structure of the cluster and affect the properties of galaxies in the cluster, especially at the boundaries of the cluster in the infall region. Explaining the differences between galaxy populations, mass, and richness of A2142, and other groups and clusters may lead to better insight about the formation and evolution of rich galaxy clusters.


2020 ◽  
Vol 497 (3) ◽  
pp. 2605-2615
Author(s):  
Maxim V Barkov ◽  
Maxim Lyutikov ◽  
Dmitry Khangulyan

ABSTRACT Pulsars moving through interstellar medium (ISM) produce bow shocks detected in hydrogen H α line emission. The morphology of the bow shock nebulae allows one to probe the properties of ISM on scales ∼0.01 pc and smaller. We performed 2D relativistic magnetohydrodynamic modelling of the pulsar bow shock and simulated the corresponding H α emission morphology. We find that even a mild spatial inhomogeneity of ISM density, δρ/ρ ∼ 1, leads to significant variations of the shape of the shock seen in H α line emission. We successfully reproduce the morphology of the Guitar Nebula. We infer quasi-periodic density variations in the warm component of ISM with characteristic length of ∼0.1 pc. Structures of this scale might be also responsible for the formation of the fine features seen at the forward shock of Tycho supernova remnant (SNR) in X-rays. Formation of such short periodic density structures in the warm component of ISM is puzzling, and bow-shock nebulae provide unique probes to study this phenomenon.


2019 ◽  
Vol 488 (4) ◽  
pp. 5259-5266 ◽  
Author(s):  
Congyao Zhang ◽  
Eugene Churazov ◽  
William R Forman ◽  
Natalia Lyskova

ABSTRACT Moderately strong shocks arise naturally when two subclusters merge. For instance, when a smaller subcluster falls into the gravitational potential of a more massive cluster, a bow shock is formed and moves together with the subcluster. After pericentre passage, however, the subcluster is decelerated by the gravity of the main cluster, while the shock continues moving away from the cluster centre. These shocks are considered as promising candidates for powering radio relics found in many clusters. The aim of this paper is to explore the fate of such shocks when they travel to the cluster outskirts, far from the place where the shocks were initiated. In a uniform medium, such a ‘runaway’ shock should weaken with distance. However, as shocks move to large radii in galaxy clusters, the shock is moving down a steep density gradient that helps the shock to maintain its strength over a large distance. Observations and numerical simulations show that, beyond R500, gas density profiles are as steep as, or steeper than, ∼r−3, suggesting that there exists a ‘habitable zone’ for moderately strong shocks in cluster outskirts where the shock strength can be maintained or even amplified. A characteristic feature of runaway shocks is that the strong compression, relative to the initial state, is confined to a narrow region just behind the shock. Therefore, if such a shock runs over a region with a pre-existing population of relativistic particles, then the boost in radio emissivity, due to pure adiabatic compression, will also be confined to a narrow radial shell.


Sign in / Sign up

Export Citation Format

Share Document