<p style='text-indent:20px;'>The Kurth solution is a particular non-isotropic steady state solution to the gravitational Vlasov-Poisson system. It has the property that by means of a suitable time-dependent transformation it can be turned into a family of time-dependent solutions. Therefore, for a general steady state <inline-formula><tex-math id="M1">\begin{document}$ Q(x, v) = \tilde{Q}(e_Q, \beta) $\end{document}</tex-math></inline-formula>, depending upon the particle energy <inline-formula><tex-math id="M2">\begin{document}$ e_Q $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \beta = \ell^2 = |x\wedge v|^2 $\end{document}</tex-math></inline-formula>, the question arises if solutions <inline-formula><tex-math id="M4">\begin{document}$ f $\end{document}</tex-math></inline-formula> could be generated that are of the form</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ f(t) = \tilde{Q}\Big(e_Q(R(t), P(t), B(t)), B(t)\Big) $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>for suitable functions <inline-formula><tex-math id="M5">\begin{document}$ R $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ P $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ B $\end{document}</tex-math></inline-formula>, all depending on <inline-formula><tex-math id="M8">\begin{document}$ (t, r, p_r, \beta) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M9">\begin{document}$ r = |x| $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ p_r = \frac{x\cdot v}{|x|} $\end{document}</tex-math></inline-formula>. We are going to show that, under some mild assumptions, basically if <inline-formula><tex-math id="M11">\begin{document}$ R $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M12">\begin{document}$ P $\end{document}</tex-math></inline-formula> are independent of <inline-formula><tex-math id="M13">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>, and if <inline-formula><tex-math id="M14">\begin{document}$ B = \beta $\end{document}</tex-math></inline-formula> is constant, then <inline-formula><tex-math id="M15">\begin{document}$ Q $\end{document}</tex-math></inline-formula> already has to be the Kurth solution.</p><p style='text-indent:20px;'>This paper is dedicated to the memory of Professor Robert Glassey.</p>