scholarly journals Extending Gaia  DR2 with HST  narrow-field astrometry – II. Refining the method on WISE J163940.83−684738.6★

2020 ◽  
Vol 494 (2) ◽  
pp. 2068-2075
Author(s):  
L R Bedin ◽  
C Fontanive

ABSTRACT In the second paper of this series, we perfected our method of linking high-precision Hubble Space Telescope astrometry to the high-accuracy Gaia DR2 absolute reference system to overcome the limitations of relative astrometry with narrow-field cameras. Our test case here is the Y brown dwarf WISE  J163940.83−684738.6, observed at different epochs spread over a 6-yr time baseline with the Infra-Red channel of the Wide Field Camera 3. We derived significantly improved astrometric parameters compared to previous determinations, finding (μαcos δ, μδ, ϖ) = (577.21 ± 0.24 mas yr−1, −3108.39 ± 0.27 mas yr−1, 210.4 ± 1.8 mas). In particular, our derived absolute parallax (ϖ ) corresponds to a distance of 4.75 ± 0.05 pc for the faint ultracool dwarf.

1988 ◽  
Vol 128 ◽  
pp. 55-60
Author(s):  
Arthur L. Whipple ◽  
Raynor L. Duncombe ◽  
Paul D. Hemenway

We have begun a program to establish a dynamical reference frame based on the motions of minor planets. The program will utilize observations from the Hubble Space Telescope, and will ultimately tie the HIPPARCOS reference system to a dynamical base. Thirty-four minor planets, 20 of which are suitable for observation with the Hubble Space Telescope, have been selected. Ground based observations, particularly crossing-point observations with long focus reflectors, have been initiated.A computer program to simultaneously solve for the corrections of the orbits of the 34 minor planets including the crossing-point observations, was successfully run. The observations are treated by the method of W. H. Jeffreys. Using simulated data, solutions with and without crossing point observations demonstrate the value of those observations to produce a homogeneous and coherent set of results.


2004 ◽  
Author(s):  
Jennifer A. Turner-Valle ◽  
Joseph Sullivan ◽  
John E. Mentzell ◽  
Robert A. Woodruff

2010 ◽  
Vol 9 (4) ◽  
pp. 265-271 ◽  
Author(s):  
W.B. Sparks ◽  
M. McGrath ◽  
K. Hand ◽  
H.C. Ford ◽  
P. Geissler ◽  
...  

AbstractEuropa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes.


2020 ◽  
Vol 497 (4) ◽  
pp. 5136-5154
Author(s):  
Anjali A A Piette ◽  
Nikku Madhusudhan

ABSTRACT Isolated brown dwarfs provide remarkable laboratories for understanding atmospheric physics in the low-irradiation regime, and can be observed more precisely than exoplanets. As such, they provide a glimpse into the future of high-signal-to-noise ratio (SNR) observations of exoplanets. In this work, we investigate several new considerations that are important for atmospheric retrievals of high-quality thermal emission spectra of sub-stellar objects. We pursue this using an adaptation of the h y dra atmospheric retrieval code. We propose a parametric pressure–temperature (P–T) profile for brown dwarfs consisting of multiple atmospheric layers, parametrized by the temperature change across each layer. This model allows the steep temperature gradient of brown dwarf atmospheres to be accurately retrieved while avoiding commonly encountered numerical artefacts. The P–T model is especially flexible in the photosphere, which can reach a few tens of bar for T-dwarfs. We demonstrate an approach to include model uncertainties in the retrieval, focusing on uncertainties introduced by finite spectral and vertical resolution in the atmospheric model used for retrieval (∼8 per cent in the present case). We validate our retrieval framework by applying it to a simulated data set and then apply it to the HST/WFC3 (Hubble Space Telescope’s Wide-Field Camera 3) spectrum of the T-dwarf 2MASS J2339+1352. We retrieve sub-solar abundances of H2O and CH4 in the object at ∼0.1 dex precision. Additionally, we constrain the temperature structure to within ∼100 K in the photosphere. Our results demonstrate the promise of high-SNR spectra to provide high-precision abundance estimates of sub-stellar objects.


1994 ◽  
Vol 107 ◽  
pp. 1904 ◽  
Author(s):  
Andrew C. Phillips ◽  
Duncan A. Forbes ◽  
Matthew A. Bershady ◽  
Garth D. Illingworth ◽  
David C. Koo

1994 ◽  
Vol 437 ◽  
pp. 67 ◽  
Author(s):  
R. E. Griffiths ◽  
K. U. Ratnatunga ◽  
L. W. Neuschaefer ◽  
S. Casertano ◽  
M. Im ◽  
...  

2003 ◽  
Vol 211 ◽  
pp. 523-524
Author(s):  
Karl Stapelfeldt

The proposed Eclipse Discovery mission is an optical space telescope designed to provide a thousandfold reduction in scattered light near bright stars in comparison to any Hubble Space Telescope instrument. A survey of 500 single stars within 15 pc can detect companions with absolute z magnitude of 22 at separations > 10 AU in most of the targets. Spectrophotometry of CH4 and H2O bands between 0.8-1.0 μm can be used to derive the effective temperatures of the objects. The ECLIPSE brown dwarf survey would directly measure the luminosity function of brown dwarf companions down to ~20 Jupiter masses, providing a crucial comparison with field objects.


Sign in / Sign up

Export Citation Format

Share Document