scholarly journals Axion structure formation – II. The wrath of collapse

2020 ◽  
Vol 493 (4) ◽  
pp. 5944-5971
Author(s):  
Erik W Lentz ◽  
Thomas R Quinn ◽  
Leslie J Rosenberg

ABSTRACT The first paper in this series showed that quantum chromodynamic axion dark matter, as a highly correlated Bose fluid, contains extra-classical physics on cosmological scales. The source of the derived extra-classical physics is exchange–correlation interactions induced by the constraints of symmetric particle exchange and interaxion correlations from self-gravitation. The paper also showed that the impact of extra-classical physics on early structure formation is marginal, as the exchange–correlation interaction is inherently non-linear. This paper continues the study of axion structure formation into the non-linear regime, considering the case of full collapse and virialization. The N-body method is chosen to study the collapse, and its algorithms are derived for a condensed Bose fluid. Simulations of isolated gravitational collapse are performed for both Bose and cold dark matter fluids using a prototype N-body code. Unique Bose structures are found to survive even the most violent collapses. Bose post-collapse features include dynamical changes to global structures, creation of new broad sub-structures, violations of classical binding energy conditions, and new fine structures. Effective models of the novel structures are constructed and possibilities for their observation are discussed.

Author(s):  
Tanja Rindler-Daller

In recent years, Bose-Einstein-condensed dark matter (BEC-DM) has become a popular alternative to standard, collisionless cold dark matter (CDM). This BEC-DM -also called scalar field dark matter (SFDM)- can suppress structure formation and thereby resolve the small-scale crisis of CDM for a range of boson masses. However, these same boson masses also entail implications for BEC-DM substructure within galaxies, especially within our own Milky Way. Observational signature effects of BEC-DM substructure depend upon its unique quantum-mechanical features and have the potential to reveal its presence. Ongoing efforts to determine the dark matter substructure in our Milky Way will continue and expand considerably over the next years. In this contribution, we will discuss some of the existing constraints and potentially new ones with respect to the impact of BEC-DM onto baryonic tracers. Studying dark matter substructure in our Milky Way will soon resolve the question, whether dark matter behaves classical or quantum on scales of ≲ 1 kpc.


Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


2020 ◽  
Vol 497 (3) ◽  
pp. 2941-2953 ◽  
Author(s):  
Anchal Saxena ◽  
Suman Majumdar ◽  
Mohd Kamran ◽  
Matteo Viel

ABSTRACT The nature of dark matter sets the timeline for the formation of first collapsed haloes and thus affects the sources of reionization. Here, we consider two different models of dark matter: cold dark matter (CDM) and thermal warm dark matter (WDM), and study how they impact the epoch of reionization (EoR) and its 21-cm observables. Using a suite of simulations, we find that in WDM scenarios, the structure formation on small scales gets suppressed, resulting in a smaller number of low-mass dark matter haloes compared to the CDM scenario. Assuming that the efficiency of sources in producing ionizing photons remains the same, this leads to a lower number of total ionizing photons produced at any given cosmic time, thus causing a delay in the reionization process. We also find visual differences in the neutral hydrogen (H i) topology and in 21-cm maps in case of the WDM compared to the CDM. However, differences in the 21-cm power spectra, at the same neutral fraction, are found to be small. Thus, we focus on the non-Gaussianity in the EoR 21-cm signal, quantified through its bispectrum. We find that the 21-cm bispectra (driven by the H i topology) are significantly different in WDM models compared to the CDM, even for the same mass-averaged neutral fractions. This establishes that the 21-cm bispectrum is a unique and promising way to differentiate between dark matter models, and can be used to constrain the nature of the dark matter in the future EoR observations.


2016 ◽  
Vol 456 (4) ◽  
pp. 4247-4255 ◽  
Author(s):  
Steffen Heß ◽  
Francisco-Shu Kitaura

Abstract In this work, we investigate the impact of cosmic flows and density perturbations on Hubble constant H0 measurements using non-linear phase–space reconstructions of the Local Universe (LU). In particular, we rely on a set of 25 precise constrained N-body simulations based on Bayesian initial conditions reconstructions of the LU using the Two-Micron Redshift Survey galaxy sample within distances of about 90  h−1 Mpc. These have been randomly extended up to volumes enclosing distances of 360  h−1 Mpc with augmented Lagrangian perturbation theory (750 simulations in total), accounting in this way for gravitational mode coupling from larger scales, correcting for periodic boundary effects, and estimating systematics of missing attractors (σlarge = 134  s−1 km). We report on Local Group (LG) speed reconstructions, which for the first time are compatible with those derived from cosmic microwave background-dipole measurements: |vLG| = 685 ± 137  s−1 km. The direction (l, b) = (260$_{.}^{\circ}$5 ± 13$_{.}^{\circ}$3, 39$_{.}^{\circ}$1 ± 10$_{.}^{\circ}$4) is found to be compatible with the observations after considering the variance of large scales. Considering this effect of large scales, our local bulk flow estimations assuming a Λ cold dark matter model are compatible with the most recent estimates based on velocity data derived from the Tully–Fisher relation. We focus on low-redshift supernova measurements out to 0.01 < z < 0.025, which have been found to disagree with probes at larger distances. Our analysis indicates that there are two effects related to cosmic variance contributing to this tension. The first one is caused by the anisotropic distribution of supernovae, which aligns with the velocity dipole and hence induces a systematic boost in H0. The second one is due to the inhomogeneous matter fluctuations in the LU. In particular, a divergent region surrounding the Virgo Supercluster is responsible for an additional positive bias in H0. Taking these effects into account yields a correction of ΔH0 = -1.76 ± 0.21  s− 1 km Mpc− 1, thereby reducing the tension between local probes and more distant probes. Effectively H0 is lower by about 2 per cent.


1987 ◽  
Vol 117 ◽  
pp. 367-367
Author(s):  
Rosemary F. G. Wyse ◽  
Bernard J. T. Jones

We present a simple model for the formation of elliptical galaxies, based on a binary clustering hierarchy of dark matter, the chemical enrichment of the gas at each level being controlled by supernovae. The initial conditions for the non-linear phases of galaxy formation are set by the post-recombination power spectrum of density fluctuations. We investigate two models for this power spectrum - the first is a straightforward power law, |δk|2 ∝ kn, and the second is Peeble's analytic approximation to the emergent spectrum in a universe dominated by cold dark matter. The normalisation is chosen such that on some scale, say M ∼ 1012M⊙, the objects that condense out have properties - radius and velocity dispersion - resembling ‘typical’ galaxies. There is some ambiguity in this due to the poorly determined mass-to-light ratio of a typical elliptical galaxy — we look at two normalisations, σ1D ∼ 350kms−1 and σ1D ∼ 140kms−1. The choice determines which of Compton cooling or hydrogen cooling is more important during the galaxy formation period. The non-linear behaviour of the perturbations is treated by the homogeneous sphere approximation.


2019 ◽  
Vol 486 (4) ◽  
pp. 4545-4568 ◽  
Author(s):  
Catherine E Fielder ◽  
Yao-Yuan Mao ◽  
Jeffrey A Newman ◽  
Andrew R Zentner ◽  
Timothy C Licquia

ABSTRACT On small scales there have been a number of claims of discrepancies between the standard cold dark matter (CDM) model and observations. The ‘missing satellites problem’ infamously describes the overabundance of subhaloes from CDM simulations compared to the number of satellites observed in the Milky Way. A variety of solutions to this discrepancy have been proposed; however, the impact of the specific properties of the Milky Way halo relative to the typical halo of its mass has yet to be explored. Motivated by recent studies that identified ways in which the Milky Way is atypical, we investigate how the properties of dark matter haloes with mass comparable to our Galaxy’s – including concentration, spin, shape, and scale factor of the last major merger – correlate with the subhalo abundance. Using zoom-in simulations of Milky Way-like haloes, we build two models of subhalo abundance as functions of host halo properties. From these models we conclude that the Milky Way most likely has fewer subhaloes than the average halo of the same mass. We expect up to 30 per cent fewer subhaloes with low maximum rotation velocities ($V_{\rm max}^{\rm sat} \sim 10$ km s−1) at the 68 per cent confidence level and up to 52 per cent fewer than average subhaloes with high rotation velocities ($V_{\rm max}^{\rm sat} \gtrsim 30$ km s−1, comparable to the Magellanic Clouds) than would be expected for a typical halo of the Milky Way’s mass. Concentration is the most informative single parameter for predicting subhalo abundance. Our results imply that models tuned to explain the missing satellites problem assuming typical subhalo abundances for our Galaxy may be overcorrecting.


2004 ◽  
Vol 220 ◽  
pp. 91-98 ◽  
Author(s):  
J. E. Taylor ◽  
J. Silk ◽  
A. Babul

Models of structure formation based on cold dark matter predict that most of the small dark matter haloes that first formed at high redshift would have merged into larger systems by the present epoch. Substructure in present-day haloes preserves the remains of these ancient systems, providing the only direct information we may ever have about the low-mass end of the power spectrum. We describe some recent attempts to model halo substructure down to very small masses, using a semi-analytic model of halo formation. We make a preliminary comparison between the model predictions, observations of substructure in lensed systems, and the properties of local satellite galaxies.


2020 ◽  
Vol 498 (4) ◽  
pp. 6013-6033
Author(s):  
Mario H Amante ◽  
Juan Magaña ◽  
V Motta ◽  
Miguel A García-Aspeitia ◽  
Tomás Verdugo

ABSTRACT Inspired by a new compilation of strong-lensing systems, which consist of 204 points in the redshift range 0.0625 < zl < 0.958 for the lens and 0.196 < zs < 3.595 for the source, we constrain three models that generate a late cosmic acceleration: the ω-cold dark matter model, the Chevallier–Polarski–Linder, and the Jassal–Bagla–Padmanabhan parametrizations. Our compilation contains only those systems with early-type galaxies acting as lenses, with spectroscopically measured stellar velocity dispersions, estimated Einstein radius, and both the lens and source redshifts. We assume an axially symmetric mass distribution in the lens equation, using a correction to alleviate differences between the measured velocity dispersion (σ) and the dark matter halo velocity dispersion (σDM) as well as other systematic errors that may affect the measurements. We have considered different subsamples to constrain the cosmological parameters of each model. Additionally, we generate a mock data of SLS to asses the impact of the chosen mass profile on the accuracy of Einstein radius estimation. Our results show that cosmological constraints are very sensitive to the selected data: Some cases show convergence problems in the estimation of cosmological parameters (e.g. systems with observed distance ratio Dobs < 0.5), others show high values for the χ2 function (e.g. systems with a lens equation Dobs > 1 or high velocity dispersion σ > 276 km s−1). However, we obtained a fiduciary sample with 143 systems, which improves the constraints on each tested cosmological model.


2010 ◽  
Vol 25 (02n03) ◽  
pp. 564-572
Author(s):  
MAXIM POSPELOV

I consider models of light super-weakly interacting cold dark matter, with [Formula: see text] mass, focusing on bosonic candidates such as pseudoscalars and vectors. I analyze the cosmological abundance, the γ-background created by particle decays, the impact on stellar processes due to cooling, and the direct detection capabilities in order to identify classes of models that pass all the constraints. In certain models, variants of photoelectric (or axioelectric) absorption of dark matter in direct-detection experiments can provide a sensitivity to the superweak couplings to the Standard Model which is superior to all existing indirect constraints. In all models studied, the annual modulation of the direct-detection signal is at the currently unobservable level of O(10-5).


2002 ◽  
Vol 11 (01) ◽  
pp. 61-102 ◽  
Author(s):  
JIUN-HUEI PROTY WU ◽  
PEDRO P. AVELINO ◽  
E. P. S. SHELLARD ◽  
BRUCE ALLEN

We describe a detailed study of string-seeded structure formation using high resolution numerical simulations in open universes and those with a non-zero cosmological constant. We provide a semi-analytical model which can reproduce these simulation results including the effect from small loops chopped of by the string network. A detailed study of cosmic string network properties regarding structure formation is also given, including the correlation time, the topological analysis of the source spectrum, the correlation between long strings and loops, and the evolution of long-string and loop energy densities. For models with Γ=Ω h=0.1 -0.2 and a cold dark matter background, we show that the linear density fluctuation power spectrum induced by cosmic strings has both an amplitude at 8 h-1 Mpc, σ8, and an overall shape which are consistent within uncertainties with those currently inferred from galaxy surveys. The cosmic string scenario with hot dark matter requires a strongly scale-dependent bias in order to agree with observations.


Sign in / Sign up

Export Citation Format

Share Document