SEARCHING FOR AXIONS AND OTHER EXOTICS WITH DARK MATTER DETECTORS

2010 ◽  
Vol 25 (02n03) ◽  
pp. 564-572
Author(s):  
MAXIM POSPELOV

I consider models of light super-weakly interacting cold dark matter, with [Formula: see text] mass, focusing on bosonic candidates such as pseudoscalars and vectors. I analyze the cosmological abundance, the γ-background created by particle decays, the impact on stellar processes due to cooling, and the direct detection capabilities in order to identify classes of models that pass all the constraints. In certain models, variants of photoelectric (or axioelectric) absorption of dark matter in direct-detection experiments can provide a sensitivity to the superweak couplings to the Standard Model which is superior to all existing indirect constraints. In all models studied, the annual modulation of the direct-detection signal is at the currently unobservable level of O(10-5).

2008 ◽  
Vol 23 (26) ◽  
pp. 2125-2140 ◽  
Author(s):  
R. BERNABEI ◽  
P. BELLI ◽  
F. CAPPELLA ◽  
R. CERULLI ◽  
C. J. DAI ◽  
...  

Some extensions of the Standard Model provide Dark Matter candidate particles with sub-GeV mass. These Light Dark Matter particles have been considered for example in Warm Dark Matter scenarios (e.g. the keV scale sterile neutrino, axino or gravitino). Moreover, MeV scale DM candidates have been proposed in supersymmetric models and as source of the 511 keV line from the Galactic center. In this paper the possibility of direct detection of a Light Dark Matter candidate is investigated considering the inelastic scattering processes on the electron or on the nucleus targets. Some theoretical arguments are developed and related phenomenological aspects are discussed. Allowed volumes and regions for the characteristic phenomenological parameters of the considered scenarios are derived from the DAMA/NaI annual modulation data.


Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


Author(s):  
Shehu AbdusSalam ◽  
Safura S. Barzani ◽  
Mohammadreza Noormandipour

Experimental collaborations for the large hadron collider conducted various searches for supersymmetry. In the absence of signals, lower limits were put on sparticle masses but usually within frameworks with (over-)simplifications relative to the entire indications by supersymmetry models. For complementing current interpretations of experimental bounds, we introduce a 30-parameter version of the R-parity conserving Minimal Supersymmetric Standard Model (MSSM-30). Using a sample of the MSSM-30 which are in harmony with cold dark matter, flavor and precision electroweak constraints, we explicitly show the prospects for assessing neutralino candidate dark matter in contrast to future searches for supersymmetry. The MSSM-30-parameter regions that are beyond reach to dark matter direct detection experiments could be probed by future hadron–hadron colliders.


2015 ◽  
Vol 24 (07) ◽  
pp. 1530019 ◽  
Author(s):  
Mathias Garny ◽  
Alejandro Ibarra ◽  
Stefan Vogl

Three main strategies are being pursued to search for nongravitational dark matter signals: direct detection, indirect detection and collider searches. Interestingly, experiments have reached sensitivities in these three search strategies which may allow detection in the near future. In order to take full benefit of the wealth of experimental data, and in order to confirm a possible dark matter signal, it is necessary to specify the nature of the dark matter particle and of the mediator to the Standard Model. In this paper, we focus on a simplified model where the dark matter particle is a Majorana fermion that couples to a light Standard Model fermion via a Yukawa coupling with a scalar mediator. We review the observational signatures of this model and we discuss the complementarity among the various search strategies, with emphasis in the well motivated scenario where the dark matter particles are produced in the early universe via thermal freeze-out.


Author(s):  
Junji Hisano

It is now certain that dark matter exists in the Universe. However, we do not know its nature, nor are there dark matter candidates in the standard model of particle physics or astronomy However, weakly interacting massive particles (WIMPs) in models beyond the standard model are one of the leading candidates available to provide explanation. The dark matter direct detection experiments, in which the nuclei recoiled by WIMPs are sought, are one of the methods to elucidate the nature of dark matter. This chapter introduces an effective field theory (EFT) approach in order to evaluate the nucleon–WIMP elastic scattering cross section.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Oleksii Matsedonskyi ◽  
James Unwin ◽  
Qingyun Wang

Abstract Restoration of the electroweak symmetry at temperatures around the Higgs mass is linked to tight phenomenological constraints on many baryogenesis scenarios. A potential remedy can be found in mechanisms of electroweak symmetry non-restoration (SNR), in which symmetry breaking is extended to higher temperatures due to new states with couplings to the Standard Model. Here we show that, in the presence of a second Higgs doublet, SNR can be realized with only a handful of new fermions which can be identified as viable dark matter candidates consistent with all current observational constraints. The competing requirements on this class of models allow for SNR at temperatures up to ∼TeV, and imply the presence of sub-TeV new physics with sizable interactions with the Standard Model. As a result this scenario is highly testable with signals in reach of next-generation collider and dark matter direct detection experiments.


2019 ◽  
Vol 34 (24) ◽  
pp. 1950130 ◽  
Author(s):  
Anish Ghoshal

Scalar dark matter (DM) in a theory introduces hierarchy problems, and suffers from the inability to predict the preferred mass range for the DM. In a WIMP-like minimal scalar DM setup we show that the infinite derivative theory can predict the DM mass and its coupling. The scale of nonlocality [Formula: see text] in such a theory in its lowermost limit (constrained by LHC) implies a DM mass [Formula: see text] TeV and a coupling with the Standard Model (SM) Higgs [Formula: see text]. Planned DM direct detection experiments reaching such sensitivity in the DM will effectively translate into lower bounds on the scale at which the nonlocality comes into the play.


2000 ◽  
Vol 15 (19) ◽  
pp. 1221-1225 ◽  
Author(s):  
G. B. TUPPER ◽  
R. J. LINDEBAUM ◽  
R. D. VIOLLIER

We examine the phenomenology of a low-energy extension of the Standard Model, based on the gauge group SU (3) ⊗ SU (2) ⊗ U (1)⊗ SO (3), with SO(3) operating in the shadow sector. This model offers vacuum νe → νs and νμ → ντ oscillations as the solution of the solar and atmospheric neutrino problems, and it provides a neutral heavy shadow lepton X that takes the role of a cold dark matter particle.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Cédric Delaunay ◽  
Teng Ma ◽  
Yotam Soreq

Abstract We consider models of decaying spin-1 dark matter whose dominant coupling to the standard model sector is through a dark-Higgs Yukawa portal connecting a TeV-scale vector-like lepton to the standard model (right-handed) electron. Below the electron-positron threshold, dark matter has very slow, loop-suppressed decays to photons and (electron) neutrinos, and is stable on cosmological time-scale for sufficiently small gauge coupling values. Its relic abundance is set by in-equilibrium dark lepton decays, through the freeze-in mechanism. We show that this model accommodates the observed dark matter abundance for natural values of its parameters and a dark matter mass in the ∼ 5 keV to 1 MeV range, while evading constraints from direct detection, indirect detection, stellar cooling and cosmology. We also consider the possibility of a nonzero gauge kinetic mixing with the standard model hypercharge field, which is found to yield a mild impact on the model’s phenomenology.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Jérôme Claude ◽  
Stephen Godfrey

AbstractWe explore regions of parameter space that give rise to suppressed direct detection cross sections in a simple model of scalar dark matter with a scalar portal that mixes with the standard model Higgs. We found that even this simple model allows considerable room in the parameter space that has not been excluded by direct detection limits. A number of effects leading to this result have been previously noted. Our main new result explores interference effects between different contributions to DM annihilation when the DM mass is larger than the scalar portal mass. New annihilation channels open up and the parameters of the model need to compensate to give the correct DM relic abundance, resulting in smaller direct detection cross sections. We find that even in a very simple model of DM there are still sizeable regions of parameter space that are not ruled out by experiment.


Sign in / Sign up

Export Citation Format

Share Document