scholarly journals Classification and evolution of galaxies according to the dynamical state of host clusters and galaxy luminosities

2020 ◽  
Vol 494 (3) ◽  
pp. 3317-3327 ◽  
Author(s):  
D F Morell ◽  
A L B Ribeiro ◽  
R R de Carvalho ◽  
S B Rembold ◽  
P A A Lopes ◽  
...  

ABSTRACT We analyse the dependence of galaxy evolution on cluster dynamical state and galaxy luminosity for a sample of 146 galaxy clusters from the Yang SDSS catalogue. Clusters were split according to their velocity distribution in Gaussians (G) and Non-Gaussians (NG), and further divided by luminosity regime. We performed a classification in the plane of mean stellar age versus specific star formation rate, providing three classes: star-forming (SF), passive (PAS) and intermediate (GV – green valley). We show that galaxies evolve in the same way in G and NG systems, but also suggest that their formation histories lead to different mixtures of galactic types and infall patterns. Separating the GV into star-forming and passive components, we find more bright galaxies in the passive mode of NG systems than in that of G systems. We also find more intermediate faint galaxies in the star-forming component of NG systems than in that of G systems. Our results suggest that GV is the stage where the transition from types Sab and Scd to S0 must be taking place, but the conversion between morphological types is independent of the dynamical stage of the clusters. Analysing the velocity dispersion profiles, we find that objects recently infalling onto clusters have a different composition between G and NG systems. While all galaxy types infall on to G systems, Sab and Scd dominate the infall on to NG systems. Finally, we find that faint Scd galaxies in the outskirts of NG systems present higher asymmetries relative to the mean asymmetry of field galaxies, suggesting that there are environmental effects acting on these objects.

2013 ◽  
Vol 9 (S304) ◽  
pp. 302-306
Author(s):  
Chien-Ting J. Chen ◽  
Ryan C. Hickox

AbstractWe present the results of recent studies on the co-evolution of galaxies and the supermassive black holes (SMBHs) using Herschel far-infrared and Chandra X-ray observations in the Boötes survey region. For a sample of star-forming (SF) galaxies, we find a strong correlation between galactic star formation rate and the average SMBH accretion rate in SF galaxies. Recent studies have shown that star formation and AGN accretion are only weakly correlated for individual AGN, but this may be due to the short variability timescale of AGN relative to star formation. Averaging over the full AGN population yields a strong linear correlation between accretion and star formation, consistent with a simple picture in which the growth of SMBHs and their host galaxies are closely linked over galaxy evolution time scales.


2020 ◽  
Vol 634 ◽  
pp. A97 ◽  
Author(s):  
Y. Khusanova ◽  
O. Le Fèvre ◽  
P. Cassata ◽  
O. Cucciati ◽  
B. C. Lemaux ◽  
...  

Context. The star formation rate density (SFRD) evolution presents an area of great interest in the studies of galaxy evolution and reionization. The current constraints of SFRD at z >  5 are based on the rest-frame UV luminosity functions with the data from photometric surveys. The VIMOS UltraDeep Survey (VUDS) was designed to observe galaxies at redshifts up to ∼6 and opened a window for measuring SFRD at z >  5 from a spectroscopic sample with a well-controlled selection function. Aims. We establish a robust statistical description of the star-forming galaxy population at the end of cosmic HI reionization (5.0 ≤ z ≤ 6.6) from a large sample of 49 galaxies with spectroscopically confirmed redshifts. We determine the rest-frame UV and Lyα luminosity functions and use them to calculate SFRD at the median redshift of our sample z = 5.6. Methods. We selected a sample of galaxies at 5.0 ≤ zspec ≤ 6.6 from the VUDS. We cleaned our sample from low redshift interlopers using ancillary photometric data. We identified galaxies with Lyα either in absorption or in emission, at variance with most spectroscopic samples in the literature where Lyα emitters (LAE) dominate. We determined luminosity functions using the 1/Vmax method. Results. The galaxies in this redshift range exhibit a large range in their properties. A fraction of our sample shows strong Lyα emission, while another fraction shows Lyα in absorption. UV-continuum slopes vary with luminosity, with a large dispersion. We find that star-forming galaxies at these redshifts are distributed along the main sequence in the stellar mass vs. SFR plane, described with a slope α = 0.85 ± 0.05. We report a flat evolution of the specific SFR compared to lower redshift measurements. We find that the UV luminosity function is best reproduced by a double power law, while a fit with a Schechter function is only marginally inferior. The Lyα luminosity function is best fitted with a Schechter function. We derive a logSFRDUV(M⊙ yr−1 Mpc−3) = −1.45+0.06−0.08 and logSFRDLyα(M⊙ yr−1 Mpc−3) = −1.40+0.07−0.08. The SFRD derived from the Lyα luminosity function is in excellent agreement with the UV-derived SFRD after correcting for IGM absorption. Conclusions. Our new SFRD measurements at a mean redshift of z = 5.6 are ∼0.2 dex above the mean SFRD reported in Madau & Dickinson (2014, ARA&A, 52, 415), but in excellent agreement with results from Bouwens et al. (2015a, ApJ, 803, 34). These measurements confirm the steep decline of the SFRD at z >  2. The bright end of the Lyα luminosity function has a high number density, indicating a significant star formation activity concentrated in the brightest LAE at these redshifts. LAE with equivalent width EW > 25 Å contribute to about 75% of the total UV-derived SFRD. While our analysis favors low dust content in 5.0 <  z <  6.6, uncertainties on the dust extinction correction and associated degeneracy in spectral fitting will remain an issue, when estimating the total SFRD until future surveys extending spectroscopy to the NIR rest-frame spectral domain, such as with JWST.


2020 ◽  
Vol 72 (4) ◽  
Author(s):  
Yuki Yamaguchi ◽  
Kotaro Kohno ◽  
Bunyo Hatsukade ◽  
Tao Wang ◽  
Yuki Yoshimura ◽  
...  

Abstract We make use of the ALMA twenty-Six Arcmin2 survey of GOODS-S At One-millimeter (ASAGAO), deep 1.2 mm continuum observations of a 26-arcmin2 region in the Great Observatories Origins Deep Survey-South (GOODS-S) obtained with Atacama Large Millimeter/sub-millimeter Array (ALMA), to probe dust-enshrouded star formation in K-band selected (i.e., stellar mass selected) galaxies, which are drawn from the FourStar Galaxy Evolution Survey (ZFOURGE) catalog. Based on the ASAGAO combined map, which was created by combining ASAGAO and ALMA archival data in the GOODS-South field, we find that 24 ZFOURGE sources have 1.2 mm counterparts with a signal-to-noise ratio &gt;4.5 (1σ ≃ 30–70 μJy beam−1 at 1.2 mm). Their median redshift is estimated to be $z$median = 2.38 ± 0.14. They generally follow the tight relationship of the stellar mass versus star formation rate (i.e., the main sequence of star-forming galaxies). ALMA-detected ZFOURGE sources exhibit systematically larger infrared (IR) excess (IRX ≡ LIR/LUV) compared to ZFOURGE galaxies without ALMA detections even though they have similar redshifts, stellar masses, and star formation rates. This implies the consensus stellar-mass versus IRX relation, which is known to be tight among rest-frame-ultraviolet-selected galaxies, cannot fully predict the ALMA detectability of stellar-mass-selected galaxies. We find that ALMA-detected ZFOURGE sources are the main contributors to the cosmic IR star formation rate density at $z$ = 2–3.


2019 ◽  
Vol 492 (1) ◽  
pp. 1492-1512
Author(s):  
S Gillman ◽  
A L Tiley ◽  
A M Swinbank ◽  
C M Harrison ◽  
Ian Smail ◽  
...  

ABSTRACT We present an analysis of the gas dynamics of star-forming galaxies at z ∼ 1.5 using data from the KMOS Galaxy Evolution Survey. We quantify the morphology of the galaxies using HSTcandels imaging parametrically and non-parametrically. We combine the H α dynamics from KMOS with the high-resolution imaging to derive the relation between stellar mass (M*) and stellar specific angular momentum (j*). We show that high-redshift star-forming galaxies at z ∼ 1.5 follow a power-law trend in specific stellar angular momentum with stellar mass similar to that of local late-type galaxies of the form j*  ∝  M$_*^{0.53\, \pm \, 0.10}$. The highest specific angular momentum galaxies are mostly disc-like, although generally both peculiar morphologies and disc-like systems are found across the sequence of specific angular momentum at a fixed stellar mass. We explore the scatter within the j* – M* plane and its correlation with both the integrated dynamical properties of a galaxy (e.g. velocity dispersion, Toomre Qg, H α star formation rate surface density ΣSFR) and its parametrized rest-frame UV / optical morphology (e.g. Sérsic index, bulge to total ratio, clumpiness, asymmetry, and concentration). We establish that the position in the j* – M* plane is strongly correlated with the star-formation surface density and the clumpiness of the stellar light distribution. Galaxies with peculiar rest-frame UV / optical morphologies have comparable specific angular momentum to disc- dominated galaxies of the same stellar mass, but are clumpier and have higher star formation rate surface densities. We propose that the peculiar morphologies in high-redshift systems are driven by higher star formation rate surface densities and higher gas fractions leading to a more clumpy interstellar medium.


2019 ◽  
Vol 492 (1) ◽  
pp. 96-139 ◽  
Author(s):  
Asa F L Bluck ◽  
Roberto Maiolino ◽  
Sebastian F Sánchez ◽  
Sara L Ellison ◽  
Mallory D Thorp ◽  
...  

ABSTRACT We present an analysis of star formation and quenching in the SDSS-IV MaNGA-DR15, utilizing over 5 million spaxels from ∼3500 local galaxies. We estimate star formation rate surface densities (ΣSFR) via dust corrected H α flux where possible, and via an empirical relationship between specific star formation rate (sSFR) and the strength of the 4000 Å break (D4000) in all other cases. We train a multilayered artificial neural network (ANN) and a random forest (RF) to classify spaxels into ‘star-forming’ and ‘quenched’ categories given various individual (and groups of) parameters. We find that global parameters (pertaining to the galaxy as a whole) perform collectively the best at predicting when spaxels will be quenched, and are substantially superior to local/spatially resolved and environmental parameters. Central velocity dispersion is the best single parameter for predicting quenching in central galaxies. We interpret this observational fact as a probable consequence of the total integrated energy from active galactic neucleus (AGN) feedback being traced by the mass of the black hole, which is well known to correlate strongly with central velocity dispersion. Additionally, we train both an ANN and RF to estimate ΣSFR values directly via regression in star-forming regions. Local/spatially resolved parameters are collectively the most predictive at estimating ΣSFR in these analyses, with stellar mass surface density at the spaxel location (Σ*) being by far the best single parameter. Thus, quenching is fundamentally a global process but star formation is governed locally by processes within each spaxel.


Author(s):  
S Gillman ◽  
A L Tiley ◽  
A M Swinbank ◽  
U Dudzevičiūtė ◽  
R M Sharples ◽  
...  

Abstract We present an analysis of the chemical abundance properties of ≈650 star-forming galaxies at z ≈ 0.6 – 1.8. Using integral-field observations from the K - band Multi-Object Spectrograph (KMOS), we quantify the [N ii]/Hα emission-line ratio, a proxy for the gas-phase Oxygen abundance within the interstellar medium. We define the stellar mass – metallicity relation at z ≈ 0.6 – 1.0 and z ≈ 1.2 – 1.8 and analyse the correlation between the scatter in the relation and fundamental galaxy properties (e.g. Hα star-formation rate, Hα specific star-formation rate, rotation dominance, stellar continuum half-light radius and Hubble-type morphology). We find that for a given stellar mass, more highly star-forming, larger and irregular galaxies have lower gas-phase metallicities, which may be attributable to their lower surface mass densities and the higher gas fractions of irregular systems. We measure the radial dependence of gas-phase metallicity in the galaxies, establishing a median, beam smearing-corrected, metallicity gradient of ΔZ/ΔR= 0.002 ± 0.004 dex kpc−1, indicating on average there is no significant dependence on radius. The metallicity gradient of a galaxy is independent of its rest-frame optical morphology, whilst correlating with its stellar mass and specific star-formation rate, in agreement with an inside-out model of galaxy evolution, as well as its rotation dominance. We quantify the evolution of metallicity gradients, comparing the distribution of ΔZ/ΔR in our sample with numerical simulations and observations at z ≈ 0 – 3. Galaxies in our sample exhibit flatter metallicity gradients than local star-forming galaxies, in agreement with numerical models in which stellar feedback plays a crucial role redistributing metals.


2018 ◽  
Vol 613 ◽  
pp. A72 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
D. Schaerer ◽  
M. Cirasuolo ◽  
O. J. Turner ◽  
...  

We present results from the KMOS LENsing Survey (KLENS), which is exploiting gravitational lensing to study the kinematics of 24 star-forming galaxies at 1.4 < z < 3.5 with a median mass of log(M⋆∕M⊙) = 9.6 and a median star formation rate (SFR) of 7.5 M⊙ yr−1. We find that 25% of these low mass/low SFR galaxies are rotation-dominated, while the majority of our sample shows no velocity gradient. When combining our data with other surveys, we find that the fraction of rotation-dominated galaxies increases with the stellar mass, and decreases for galaxies with a positive offset from the main sequence (higher specific star formation rate). We also investigate the evolution of the intrinsic velocity dispersion, σ0, as a function of the redshift, z, and stellar mass, M⋆, assuming galaxies in quasi-equilibrium (Toomre Q parameter equal to 1). From the z − σ0 relation, we find that the redshift evolution of the velocity dispersion is mostly expected for massive galaxies (log(M⋆∕M⊙) > 10). We derive a M⋆ − σ0 relation, using the Tully–Fisher relation, which highlights that a different evolution of the velocity dispersion is expected depending on the stellar mass, with lower velocity dispersions for lower masses, and an increase for higher masses, stronger at higher redshift. The observed velocity dispersions from this work and from comparison samples spanning 0 < z < 3.5 appear to follow this relation, except at higher redshift (z > 2), where we observe higher velocity dispersions for low masses (log(M⋆∕M⊙) ~ 9.6) and lower velocity dispersions for high masses (log(M⋆∕M⊙) ~ 10.9) than expected. This discrepancy could, for instance, suggest that galaxies at high redshift do not satisfy the stability criterion, or that the adopted parametrization of the specific star formation rate and molecular properties fail at high redshift.


2019 ◽  
Vol 488 (1) ◽  
pp. 1180-1198 ◽  
Author(s):  
Andreas Schulze ◽  
John D Silverman ◽  
Emanuele Daddi ◽  
Wiphu Rujopakarn ◽  
Daizhong Liu ◽  
...  

ABSTRACT We present ALMA Band 7 observations at $850\, \mu$m of 20 luminous ($\log \, L_{\rm bol}\,\gt\, 46.9$ [erg s−1]) unobscured quasars at z ∼ 2. We detect continuum emission for 19/20 quasars. After subtracting an AGN contribution, we measure the total far-IR luminosity for 18 quasars, assuming a modified blackbody model, and attribute the emission as indicative of the star formation rate (SFR). Our sample can be characterized with a lognormal SFR distribution having a mean of 140 M⊙ yr−1 and a dispersion of 0.5 dex. Based on an inference of their stellar masses, the SFRs are similar, in both the mean and dispersion, with star-forming main-sequence galaxies at the equivalent epoch. Thus, there is no evidence for a systematic enhancement or suppression (i.e. regulation or quenching) of star formation in the hosts of the most luminous quasars at z ∼ 2. These results are consistent with the Magneticum cosmological simulation, while in disagreement with a widely recognized phenomenological model that predicts higher SFRs than observed here based on the high bolometric luminosities of this sample. Furthermore, there is only a weak relation between SFR and accretion rate on to their supermassive black holes both for average and individual measurements. We interpret these results as indicative of star formation and quasar accretion being fed from the available gas reservoir(s) in their host with a disconnect due to their different physical sizes, temporal scales, and means of gas processing.


2017 ◽  
Vol 602 ◽  
pp. A51 ◽  
Author(s):  
B. Vollmer ◽  
P. Gratier ◽  
J. Braine ◽  
C. Bot

High-z star-forming galaxies have significantly higher gas fractions and star-formation efficiencies per molecular gas mass than local star-forming galaxies. In this work, we take a closer look at the gas content or fraction and the associated star-formation rate in main sequence and starburst galaxies at z = 0 and z ~ 1–2 by applying an analytical model of galactic clumpy gas disks to samples of local spiral galaxies, ULIRGs, submillimeter (smm), and high-z star-forming galaxies. The model simultaneously calculates the total gas mass, Hi/H2 mass, the gas velocity dispersion, IR luminosity, IR spectral energy distribution, CO spectral line energy distribution (SLED), HCN(1–0) and HCO+(1–0) emission of a galaxy given its size, integrated star formation rate, stellar mass radial profile, rotation curve, and Toomre Q parameter. The model reproduces the observed CO luminosities and SLEDs of all sample galaxies within the model uncertainties (~0.3 dex). Whereas the CO emission is robust against the variation of model parameters, the HCN and HCO+ emissions are sensitive to the chemistry of the interstellar medium. The CO and HCN mass-to-light conversion factors, including CO-dark H2, are given and compared to the values found in the literature. All model conversion factors have uncertainties of a factor of two. Both the HCN and HCO+ emissions trace the dense molecular gas to a factor of approximately two for the local spiral galaxies, ULIRGs and smm-galaxies. Approximately 80% of the molecular line emission of compact starburst galaxies originates in non-self-gravitating gas clouds. The effect of HCN infrared pumping is small but measurable (10–20%). The gas velocity dispersion varies significantly with the Toomre Q parameter. The Q = 1.5 model yields high-velocity dispersions (vdisp ≫ 10 km s-1) consistent with available observations of high-z star-forming galaxies and ULIRGs. However, we note that these high-velocity dispersions are not mandatory for starburst galaxies. The integrated Kennicutt-Schmidt law has a slope of approximately 1 for the local spirals, ULIRGs, and smm-galaxies, whereas the slope is 1.7 for high-z star-forming galaxies. The model shows Kennicutt-Schmidt laws with respect to the molecular gas surface density with slopes of approximately 1.5 for local spiral galaxies, high-z star-forming galaxies. The relation steepens for compact starburst galaxies. The model star-formation rate per unit area is, as observed, proportional to the molecular gas surface density divided by the dynamical timescale. Our relatively simple analytic model together with the recipes for the molecular line emission appears to capture the essential physics of galactic clumpy gas disks.


Author(s):  
Ankush Mandal ◽  
Dipanjan Mukherjee ◽  
Christoph Federrath ◽  
Nicole P H Nesvadba ◽  
Geoffrey V Bicknell ◽  
...  

Abstract We apply a turbulence-regulated model of star formation to calculate the star formation rate (SFR) of dense star-forming clouds in simulations of jet-ISM interactions. The method isolates individual clumps and accounts for the impact of virial parameter and Mach number of the clumps on the star formation activity. This improves upon other estimates of the SFR in simulations of jet–ISM interactions, which are often solely based on local gas density, neglecting the impact of turbulence. We apply this framework to the results of a suite of jet-ISM interaction simulations to study how the jet regulates the SFR both globally and on the scale of individual star-forming clouds. We find that the jet strongly affects the multi-phase ISM in the galaxy, inducing turbulence and increasing the velocity dispersion within the clouds. This causes a global reduction in the SFR compared to a simulation without a jet. The shocks driven into clouds by the jet also compress the gas to higher densities, resulting in local enhancements of the SFR. However, the velocity dispersion in such clouds is also comparably high, which results in a lower SFR than would be observed in galaxies with similar gas mass surface densities and without powerful radio jets. We thus show that both local negative and positive jet feedback can occur in a single system during a single jet event, and that the star-formation rate in the ISM varies in a complicated manner that depends on the strength of the jet-ISM coupling and the jet break-out time-scale.


Sign in / Sign up

Export Citation Format

Share Document