scholarly journals Low frequency view of GRB 190114C reveals time varying shock micro-physics

Author(s):  
K Misra ◽  
L Resmi ◽  
D A Kann ◽  
M Marongiu ◽  
A Moin ◽  
...  

Abstract We present radio and optical afterglow observations of the TeV-bright long Gamma Ray Burst (GRB) 190114C at a redshift of z = 0.425, which was detected by the MAGIC telescope. Our observations with ALMA, ATCA, and uGMRT were obtained by our low frequency observing campaign and range from ∼1 to ∼140 days after the burst and the optical observations were done with three optical telescopes spanning up to ∼25 days after the burst. Long term radio/mm observations reveal the complex nature of the afterglow, which does not follow the spectral and temporal closure relations expected from the standard afterglow model. We find that the microphysical parameters of the external forward shock, representing the share of shock-created energy in the non-thermal electron population and magnetic field, are evolving with time. The inferred kinetic energy in the blast-wave depends strongly on the assumed ambient medium density profile, with a constant density medium demanding almost an order of magnitude higher energy than in the prompt emission, while a stellar wind-driven medium requires approximately the same amount energy as in prompt emission.

2012 ◽  
Vol 8 (S290) ◽  
pp. 263-264
Author(s):  
Liang Li ◽  
En-Wei Liang ◽  
He Gao ◽  
Bing Zhang

AbstractWell-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are compiled from literature. We identify possible emission components based on our empirical fits and present statistical analysis for these components. We find that the flares are related to prompt emission, suggesting that they could have the same origin in different episodes. The shallow decay segment is not correlated with prompt gamma-rays. It likely signals a long-lasting injected wind from GRB central engines. Early after onset peak is closely related with prompt emission. The ambient medium density profile is likely n ∝ r−1. No correlation between the late re-brightening bump and prompt gamma-rays or the onset bump is found. They may be from another jet component.


Author(s):  
A.J van der Horst ◽  
A Kamble ◽  
R.A.M.J Wijers ◽  
L Resmi ◽  
D Bhattacharya ◽  
...  

Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a 3-year monitoring campaign of GRB 030329 with the Westerbork Synthesis Radio Telescopes and the Giant Metrewave Radio Telescope. Our observations, combined with observations at other wavelengths, have allowed us to determine the GRB blast wave physical parameters, such as the total burst energy and the ambient medium density, as well as to investigate the jet nature of the relativistic outflow. Further, by modelling the late-time radio light curve of GRB 030329, we predict that the Low-Frequency Array (30–240 MHz) will be able to observe afterglows of similar GRBs, and constrain the physics of the blast wave during its non-relativistic phase.


2013 ◽  
Vol 9 (S304) ◽  
pp. 95-95
Author(s):  
Francesco Massaro ◽  
R. D'Abrusco ◽  
M. Giroletti ◽  
A. Paggi ◽  
N. Masetti ◽  
...  

AbstractAbout one third of the gamma-ray sources detected by Fermi have still no firmly established counterpart at lower energies. Here we propose a new approach to find candidate counterparts for the unidentified gamma-ray sources (UGSs) based on the 325 MHz radio survey performed with Westerbork Synthesis Radio Telescope (WSRT) in the northern hemisphere. First we investigate the low-frequency radio properties of blazars, the largest known population of gamma-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO VLA Sky survey (NVSS). We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in literature to look for infrared and optical counterparts of the gamma-ray blazar candidates selected with the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research we identify 23 new gamma-ray blazar candidates out of 32 UGSs investigated. I will also present the first analysis of very low frequency radio emission of blazars based on the recent Very Large Array Low-Frequency Sky Survey (VLSS) at 74 MHz. I show that blazars present radio flat spectra when evaluated at 74 MHz, about an order of magnitude in frequency lower than previous analyses. The implications of these findings in the contest of the blazars – radio galaxies connection will be discussed.


Science ◽  
2013 ◽  
Vol 343 (6166) ◽  
pp. 38-41 ◽  
Author(s):  
W. T. Vestrand ◽  
J. A. Wren ◽  
A. Panaitescu ◽  
P. R. Wozniak ◽  
H. Davis ◽  
...  

The optical light generated simultaneously with x-rays and gamma rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse. We report on the bright optical flash and fading afterglow from powerful burst GRB 130427A. The optical and >100–megaelectron volt (MeV) gamma-ray flux show a close correlation during the first 7000 seconds, which is best explained by reverse shock emission cogenerated in the relativistic burst ejecta as it collides with surrounding material. At later times, optical observations show the emergence of emission generated by a forward shock traversing the circumburst environment. The link between optical afterglow and >100-MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying gamma-ray emission at energies ranging from gigaelectron volts to teraelectron volts.


Author(s):  
MICHEL BOËR

The prompt emission of gamma-ray burst sources is still the main means of detection, and a privilegied access to the souce dynamics. It is detected from radio to GeV energies, and its study is crucial for the overall understanding of the phenomenom. We present here a panorama of the rapid optical observations, and what can be infered from the data. We will discuss also the new instruments which are planned for the observation of the prompt and early afterglow at optical and infrared wavelengths, with spectral capabilities.


2019 ◽  
Vol 628 ◽  
pp. A59 ◽  
Author(s):  
G. Oganesyan ◽  
L. Nava ◽  
G. Ghirlanda ◽  
A. Melandri ◽  
A. Celotti

Information on the spectral shape of prompt emission in gamma-ray bursts (GRB) is mostly available only at energies ≳10 keV, where the main instruments for GRB detection are sensitive. The origin of this emission is still very uncertain because of the apparent inconsistency with synchrotron radiation, which is the most obvious candidate, and the resulting need for considering less straightforward scenarios. The inclusion of data down to soft X-rays (∼0.5 keV), which are available only in a small fraction of GRBs, has firmly established the common presence of a spectral break in the low-energy part of prompt spectra, and even more importantly, the consistency of the overall spectral shape with synchrotron radiation in the moderately fast-cooling regime, the low-energy break being identified with the cooling frequency. In this work we further extend the range of investigation down to the optical band. In particular, we test the synchrotron interpretation by directly fitting a theoretically derived synchrotron spectrum and making use of optical to gamma-ray data. Secondly, we test an alternative model that considers the presence of a black-body component at ∼keV energies, in addition to a non-thermal component that is responsible for the emission at the spectral peak (100 keV–1 MeV). We find that synchrotron radiation provides a good description of the broadband data, while models composed of a thermal and a non-thermal component require the introduction of a low-energy break in the non-thermal component in order to be consistent with optical observations. Motivated by the good quality of the synchrotron fits, we explore the physical parameter space of the emitting region. In a basic prompt emission scenario we find quite contrived solutions for the magnetic field strength (5 G < B′< 40 G) and for the location of the region where the radiation is produced (Rγ >  1016 cm). We discuss which assumptions of the basic model would need to be relaxed in order to achieve a more natural parameter space.


2020 ◽  
Vol 493 (1) ◽  
pp. 783-791 ◽  
Author(s):  
Tatsuya Matsumoto ◽  
Shigeo S Kimura ◽  
Kohta Murase ◽  
Peter Mészáros

ABSTRACT Some short gamma-ray bursts (SGRBs) show a longer lasting emission phase, called extended emission (EE) lasting ${\sim}10^{2\!-\!3}\, \rm s$, as well as a plateau emission (PE) lasting ${\sim}10^{4\!-\!5}\, \rm s$. Although a long-lasting activity of the central engines is a promising explanation for powering both emissions, their physical origin and their emission mechanisms are still uncertain. In this work, we study the properties of the EEs and their connection with the PEs. First, we constrain the minimal Lorentz factor Γ of the outflows powering EEs, using compactness arguments and find that the outflows should be relativistic, Γ ≳ 10. We propose a consistent scenario for the PEs, where the outflow eventually catches up with the jet responsible for the prompt emission, injecting energy into the forward shock formed by the prior jet, which naturally results in a PE. We also derive the radiation efficiency of EEs and the Lorentz factor of the outflow within our scenario for 10 well-observed SGRBs accompanied by both EE and PE. The efficiency has an average value of ${\sim}3\, {{\ \rm per\ cent}}$ but shows a broad distribution ranging from ∼0.01 to ${\sim}100{{\ \rm per\ cent}}$. The Lorentz factor is ∼20–30, consistent with the compactness arguments. These results suggest that EEs are produced by a slower outflow via more inefficient emission than the faster outflow that causes the prompt emission with a high radiation efficiency.


Author(s):  
G. E. Anderson ◽  
P. J. Hancock ◽  
A. Rowlinson ◽  
M. Sokolowski ◽  
A. Williams ◽  
...  

Abstract Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a $3\sigma$ persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in $3\sigma$ limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a $6\sigma$ fluence upper-limit range from 570 Jy ms at DM $=3\,000$ pc cm–3 ( $z\sim 2.5$ ) to 1 750 Jy ms at DM $=200$ pc cm–3 ( $z\sim 0.1)$ , corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.


2021 ◽  
Vol 922 (2) ◽  
pp. 257
Author(s):  
Tyler Parsotan ◽  
Davide Lazzati

Abstract A complete understanding of gamma-ray bursts (GRBs) has been difficult to achieve, due to our incomplete knowledge of the radiation mechanism that is responsible for producing the prompt emission. This emission, which is detected in the first tens of seconds of the GRB, is typically dominated by hard X-ray and gamma-ray photons, although there have also been a few dozen prompt optical detections. These optical detections have the potential to discriminate between plausible prompt emission models, such as the photospheric and synchrotron shock models. In this work, we use an improved MCRaT code, which includes cyclo-synchrotron emission and absorption, to conduct radiative transfer calculations from optical to gamma-ray energies under the photospheric model. The calculations are conducted using a set of two-dimensional relativistic hydrodynamic long GRB jet simulations, consisting of a constant and a variable jet. We predict the correlations between the optical and gamma-ray light curves as functions of observer angle and jet variability, and find that there should be extremely dim optical prompt precursors for large viewing angles. Additionally, the detected optical emission originates from dense regions of the outflow, such as shock interfaces and the jet-cocoon interface. Our results also show that the photospheric model is unable to account for the current set of optical prompt detections that have been made and therefore additional radiative mechanisms are needed to explain these prompt optical observations. These findings show the importance of conducting global radiative transfer simulations using hydrodynamically calculated jet structures.


2021 ◽  
Vol 922 (1) ◽  
pp. 22
Author(s):  
Xiao-Yan Li ◽  
Da-Bin Lin ◽  
Jia Ren ◽  
Shu-Jin Hou ◽  
Yu-Fei Li ◽  
...  

Abstract A number of gamma-ray bursts (GRBs) exhibit the simultaneous bumps in their optical and X-ray afterglows around the jet break. These bumps are similar to the afterglows of GRB 170817A, except preceded by a long shallow decay. Its origin is unclear. We suggest that these late simultaneous bumps may sound a transition of circumburst environment from a free-wind medium to a constant density medium, e.g., the shocked-wind medium. In this paper, we study the emission of an external-forward shock propagating in a free-to-shocked wind environment at different viewing angles. The late simultaneous bumps/plateaux followed by a steep decay are found in the optical and X-ray afterglows for high-viewing-angle observers. In addition, these theoretical bumps are preceded by a long plateau or shallow decay, which is formed during the external-forward shock propagating in the free-wind environment. For low-viewing-angle observers, the above bumps also appear but only in the situation where the structured jet has a low characteristic angle and the deceleration radius of the in-core jet flow is at around or beyond the free-wind boundary. We search GRBs for afterglows with the late simultaneous optical and X-ray bumps followed by a steep decay. GRBs 120326A, 100901A, 100814A, and 120404A are obtained. We find that an off-core (in-core) observed external-forward shock in a free-to-shocked wind environment can well explain the optical and X-ray afterglows in GRBs 120326A, 100901A, and 100814A (GRB 120404A).


Sign in / Sign up

Export Citation Format

Share Document