scholarly journals GRB 030329: 3 years of radio afterglow monitoring

Author(s):  
A.J van der Horst ◽  
A Kamble ◽  
R.A.M.J Wijers ◽  
L Resmi ◽  
D Bhattacharya ◽  
...  

Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a 3-year monitoring campaign of GRB 030329 with the Westerbork Synthesis Radio Telescopes and the Giant Metrewave Radio Telescope. Our observations, combined with observations at other wavelengths, have allowed us to determine the GRB blast wave physical parameters, such as the total burst energy and the ambient medium density, as well as to investigate the jet nature of the relativistic outflow. Further, by modelling the late-time radio light curve of GRB 030329, we predict that the Low-Frequency Array (30–240 MHz) will be able to observe afterglows of similar GRBs, and constrain the physics of the blast wave during its non-relativistic phase.

2020 ◽  
Vol 496 (1) ◽  
pp. 974-986 ◽  
Author(s):  
H Zhang ◽  
I M Christie ◽  
M Petropoulou ◽  
J M Rueda-Becerril ◽  
D Giannios

ABSTRACT The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; ≳GeV) remains uncertain. The recent detection of sub-TeV emission from GRB 190114C by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) raises further debate on what powers the very high energy (VHE; ≳300 GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multiwavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB 190114C, we find that its afterglow emission in the Fermi-Large Area Telescope (LAT) band is synchrotron dominated. The late-time Fermi-LAT measurement (i.e. t ∼ 104 s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. ${\lesssim} 3\times 10^{-9}\, {\rm erg\, cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.


2018 ◽  
Vol 614 ◽  
pp. A29 ◽  
Author(s):  
J. Greiner ◽  
J. Bolmer ◽  
M. Wieringa ◽  
A. J. van der Horst ◽  
D. Petry ◽  
...  

Context. Deriving physical parameters from gamma-ray burst (GRB) afterglow observations remains a challenge, even 20 years after the discovery of afterglows. The main reason for the lack of progress is that the peak of the synchrotron emission is in the sub-mm range, thus requiring radio observations in conjunction with X-ray/optical/near-infrared data in order to measure the corresponding spectral slopes and consequently remove the ambiguity with respect to slow vs. fast cooling and the ordering of the characteristic frequencies. Aims. We have embarked on a multifrequency, multi-epoch observing campaign to obtain sufficient data for a given GRB that allows us to test the simplest version of the fireball afterglow model. Methods. We observed GRB 151027B, the 1000th Swift-detected GRB, with GROND in the optical–near-IR, ALMA in the sub-millimeter, ATCA in the radio band; we combined this with public Swift/XRT X-ray data. Results. While some observations at crucial times only return upper limits or surprising features, the fireball model is narrowly constrained by our data set, and allows us to draw a consistent picture with a fully determined parameter set. Surprisingly, we find rapid, large-amplitude flux density variations in the radio band which are extreme not only for GRBs, but generally for any radio source. We interpret them as scintillation effects, though their extreme nature requires the scattering screen to be at a much smaller distance than usually assumed, multiple screens, or a combination of the two. Conclusions. The data are consistent with the simplest fireball scenario for a blast wave moving into a constant-density medium, and slow-cooling electrons. All fireball parameters are constrained at or better than a factor of 2, except for the density and the fraction of the energy in the magnetic field which has a factor of 10 uncertainty in both directions.


2016 ◽  
Vol 12 (S324) ◽  
pp. 66-69
Author(s):  
Gavin P. Lamb ◽  
Shiho Kobayashi

AbstractCompact binary mergers, with neutron stars or neutron star and black-hole components, are thought to produce various electromagnetic counterparts: short gamma-ray bursts (GRBs) from ultra-relativistic jets followed by broadband afterglow; semi-isotropic kilonova from radioactive decay of r-process elements; and late time radio flares; etc. If the jets from such mergers follow a similar power-law distribution of Lorentz factors as other astrophysical jets then the population of merger jets will be dominated by low-Γ values. The prompt gamma-rays associated with short GRBs would be suppressed for a low-Γ jet and the jet energy will be released as X-ray/optical/radio transients when a shock forms in the ambient medium. Using Monte Carlo simulations, we study the properties of such transients as candidate electromagnetic counterparts to gravitational wave sources detectable by LIGO/Virgo. Approximately 78% of merger-jets result in failed GRB with optical peaks 14-22 magnitude and an all-sky rate of 2-3 per year.


2013 ◽  
Vol 433 (3) ◽  
pp. 2107-2121 ◽  
Author(s):  
L. Nava ◽  
L. Sironi ◽  
G. Ghisellini ◽  
A. Celotti ◽  
G. Ghirlanda

Author(s):  
Marcello Giroletti ◽  
Filippo D'Ammando ◽  
Monica Orienti ◽  
Rocco Lico

Radio loud active galactic nuclei are composed of different spatial features, each one characterized by different spectral properties in the radio band. Among them, blazars are the most common class of sources detected at gamma-rays by \fermi, and their radio emission is dominated by the flat spectrum compact core. In this contribution, we explore the connection between emission at high energy revealed by \fermi\ and at radio frequency. Taking as a reference the strong and very highly significant correlation found between gamma rays and cm-$\lambda$ radio emission, we explore different behaviours found as we change the energy range in gamma rays and in radio, therefore changing the physical parameters of the zones involved in the radiation emission. We find that the correlation weakens when we consider (1) gamma rays of energy above 10 GeV (except for high synchrotron peaked blazars) or (2) low frequency radio data taken by the Murchison Widefield Array; on the other hand, the correlation strengthens when we consider mm-$\lambda$ data taken by ALMA.


Author(s):  
K Misra ◽  
L Resmi ◽  
D A Kann ◽  
M Marongiu ◽  
A Moin ◽  
...  

Abstract We present radio and optical afterglow observations of the TeV-bright long Gamma Ray Burst (GRB) 190114C at a redshift of z = 0.425, which was detected by the MAGIC telescope. Our observations with ALMA, ATCA, and uGMRT were obtained by our low frequency observing campaign and range from ∼1 to ∼140 days after the burst and the optical observations were done with three optical telescopes spanning up to ∼25 days after the burst. Long term radio/mm observations reveal the complex nature of the afterglow, which does not follow the spectral and temporal closure relations expected from the standard afterglow model. We find that the microphysical parameters of the external forward shock, representing the share of shock-created energy in the non-thermal electron population and magnetic field, are evolving with time. The inferred kinetic energy in the blast-wave depends strongly on the assumed ambient medium density profile, with a constant density medium demanding almost an order of magnitude higher energy than in the prompt emission, while a stellar wind-driven medium requires approximately the same amount energy as in prompt emission.


2020 ◽  
Vol 495 (4) ◽  
pp. 4981-4993 ◽  
Author(s):  
Ben Margalit ◽  
Tsvi Piran

ABSTRACT Fast ejecta expelled in binary neutron star (NS) mergers or energetic supernovae (SNe) should produce late-time synchrotron radio emission as the ejecta shocks into the surrounding ambient medium. Models for such radio flares typically assume the ejecta expands into an unperturbed interstellar medium (ISM). However, it is also well known that binary NS mergers and broad-lined Ic SNe Ic can harbour relativistic jetted outflows. In this work, we show that such jets shock the ambient ISM ahead of the ejecta, thus evacuating the medium into which the ejecta subsequently collides. Using an idealized spherically symmetric model, we illustrate that this inhibits the ejecta radio flare at early times $t \lt t_{\rm col} \approx 12 \, {\rm yr} \, (E_{\rm j}/10^{49} \, {\rm erg})^{1/3} (n/1 \, {\rm cm}^{-3})^{-1/3} (\upsilon _{\rm ej}/0.1c)^{-5/3}$, where Ej is the jet energy, n the ISM density, and $\upsilon$ej the ejecta velocity. We also show that this can produce a sharply peaked enhancement in the light curve at t = tcol. This has implications for radio observations of GW170817 and future binary NS mergers, gamma-ray burst (GRB) SNe, decade-long radio transients such as FIRST J1419, and possibly other events where a relativistic outflow precedes a slower moving ejecta. Future numerical work will extend these analytic estimates and treat the multidimensional nature of the problem.


2020 ◽  
Vol 499 (3) ◽  
pp. 4097-4113 ◽  
Author(s):  
Yossef Zenati ◽  
Daniel M Siegel ◽  
Brian D Metzger ◽  
Hagai B Perets

ABSTRACT The core collapse of massive, rapidly-rotating stars are thought to be the progenitors of long-duration gamma-ray bursts (GRB) and their associated hyperenergetic supernovae (SNe). At early times after the collapse, relatively low angular momentum material from the infalling stellar envelope will circularize into an accretion disc located just outside the black hole horizon, resulting in high accretion rates necessary to power a GRB jet. Temperatures in the disc mid-plane at these small radii are sufficiently high to dissociate nuclei, while outflows from the disc can be neutron-rich and may synthesize r-process nuclei. However, at later times, and for high progenitor angular momentum, the outer layers of the stellar envelope can circularize at larger radii ≳ 107 cm, where nuclear reactions can take place in the disc mid-plane (e.g. 4He + 16O → 20Ne + γ). Here we explore the effects of nuclear burning on collapsar accretion discs and their outflows by means of hydrodynamical α-viscosity torus simulations coupled to a 19-isotope nuclear reaction network, which are designed to mimic the late infall epochs in collapsar evolution when the viscous time of the torus has become comparable to the envelope fall-back time. Our results address several key questions, such as the conditions for quiescent burning and accretion versus detonation and the generation of 56Ni in disc outflows, which we show could contribute significantly to powering GRB SNe. Being located in the slowest, innermost layers of the ejecta, the latter could provide the radioactive heating source necessary to make the spectral signatures of r-process elements visible in late-time GRB-SNe spectra.


Author(s):  
Stephan Rosswog

Compact object mergers eject neutron-rich matter in a number of ways: by the dynamical ejection mediated by gravitational torques, as neutrino-driven winds, and probably also a good fraction of the resulting accretion disc finally becomes unbound by a combination of viscous and nuclear processes. If compact binary mergers indeed produce gamma-ray bursts, there should also be an interaction region where an ultra-relativistic outflow interacts with the neutrino-driven wind and produces moderately relativistic ejecta. Each type of ejecta has different physical properties, and therefore plays a different role for nucleosynthesis and for the electromagnetic (EM) transients that go along with compact object encounters. Here, we focus on the dynamic ejecta and present results for over 30 hydrodynamical simulations of both gravitational wave-driven mergers and parabolic encounters as they may occur in globular clusters. We find that mergers eject approximately 1 per cent of a Solar mass of extremely neutron-rich material. The exact amount, as well as the ejection velocity, depends on the involved masses with asymmetric systems ejecting more material at higher velocities. This material undergoes a robust r-process and both ejecta amount and abundance pattern are consistent with neutron star mergers being a major source of the ‘heavy’ ( A >130) r-process isotopes. Parabolic collisions, especially those between neutron stars and black holes, eject substantially larger amounts of mass, and therefore cannot occur frequently without overproducing gala- ctic r-process matter. We also discuss the EM transients that are powered by radioactive decays within the ejecta (‘macronovae’), and the radio flares that emerge when the ejecta dissipate their large kinetic energies in the ambient medium.


2012 ◽  
Vol 8 (S290) ◽  
pp. 263-264
Author(s):  
Liang Li ◽  
En-Wei Liang ◽  
He Gao ◽  
Bing Zhang

AbstractWell-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are compiled from literature. We identify possible emission components based on our empirical fits and present statistical analysis for these components. We find that the flares are related to prompt emission, suggesting that they could have the same origin in different episodes. The shallow decay segment is not correlated with prompt gamma-rays. It likely signals a long-lasting injected wind from GRB central engines. Early after onset peak is closely related with prompt emission. The ambient medium density profile is likely n ∝ r−1. No correlation between the late re-brightening bump and prompt gamma-rays or the onset bump is found. They may be from another jet component.


Sign in / Sign up

Export Citation Format

Share Document