scholarly journals Effects of periodicity in observation scheduling on parameter estimation of pulsar glitches

Author(s):  
L Dunn ◽  
M E Lower ◽  
A Melatos

Abstract In certain pulsar timing experiments, where observations are scheduled approximately periodically (e.g. daily), timing models with significantly different frequencies (including but not limited to glitch models with different frequency increments) return near-equivalent timing residuals. The average scheduling aperiodicity divided by the phase error due to time-of-arrival uncertainties is a useful indicator of when the degeneracy is important. Synthetic data are used to explore the effect of this degeneracy systematically. It is found that phase-coherent tempo2 or temponest-based approaches are biased sometimes toward reporting small glitch sizes regardless of the true glitch size. Local estimates of the spin frequency alleviate this bias. A hidden Markov model is free from bias towards small glitches and announces explicitly the existence of multiple glitch solutions but sometimes fails to recover the correct glitch size. Two glitches in the UTMOST public data release are re-assessed, one in PSR J1709−4429 at MJD 58178 and the other in PSR J1452−6036 at MJD 58600. The estimated fractional frequency jump in PSR J1709−4429 is revised upward from Δf/f = (54.6 ± 1.0) × 10−9 to Δf/f = (2432.2 ± 0.1) × 10−9 with the aid of additional data from the Parkes radio telescope. We find that the available UTMOST data for PSR J1452−6036 are consistent with Δf/f = 270 × 10−9 + N/(fT) with N = 0, 1, 2, where T ≈ 1 siderealday is the observation scheduling period. Data from the Parkes radio telescope can be included, and the N = 0 case is selected unambiguously with a combined dataset.

2017 ◽  
Vol 13 (S337) ◽  
pp. 179-182 ◽  
Author(s):  
Cherry Ng

AbstractThe CHIME telescope (the Canadian Hydrogen Intensity Mapping Experiment) recently built in Penticton, Canada, is currently being commissioned. Originally designed as a cosmology experiment, it was soon recognized that CHIME has the potential to simultaneously serve as an incredibly useful radio telescope for pulsar science. CHIME operates across a wide bandwidth of 400–800 MHz and will have a collecting area and sensitivity comparable to that of the 100-m class radio telescopes. CHIME has a huge field of view of ~250 square degrees. It will be capable of observing 10 pulsars simultaneously, 24-hours per day, every day, while still accomplishing its missions to study Baryon Acoustic Oscillations and Fast Radio Bursts. It will carry out daily monitoring of roughly half of all pulsars in the northern hemisphere, including all NANOGrav pulsars employed in the Pulsar Timing Array project. It will cycle through all pulsars in the northern hemisphere with a range of cadence of no more than 10 days.


2010 ◽  
Vol 22 (9) ◽  
pp. 2369-2389 ◽  
Author(s):  
Kentaro Katahira ◽  
Jun Nishikawa ◽  
Kazuo Okanoya ◽  
Masato Okada

Neural activity is nonstationary and varies across time. Hidden Markov models (HMMs) have been used to track the state transition among quasi-stationary discrete neural states. Within this context, an independent Poisson model has been used for the output distribution of HMMs; hence, the model is incapable of tracking the change in correlation without modulating the firing rate. To achieve this, we applied a multivariate Poisson distribution with correlation terms for the output distribution of HMMs. We formulated a variational Bayes (VB) inference for the model. The VB could automatically determine the appropriate number of hidden states and correlation types while avoiding the overlearning problem. We developed an efficient algorithm for computing posteriors using the recursive relationship of a multivariate Poisson distribution. We demonstrated the performance of our method on synthetic data and real spike trains recorded from a songbird.


2012 ◽  
Vol 8 (S291) ◽  
pp. 568-570
Author(s):  
Wenming Yan ◽  
R. N. Manchester ◽  
Na Wang

AbstractAs part of the Parkes Pulsar Timing Array (PPTA) project, frequent observations of 20 millisecond pulsars are made using the Parkes 64-m radio telescope. Variations in the mean position angle of the 20 millisecond pulsars can be studied by the PPTA data being recorded in full-polarization mode. We briefly discuss these results.


2012 ◽  
Vol 8 (S291) ◽  
pp. 432-434 ◽  
Author(s):  
Ujjwal Kumar ◽  
Yashwant Gupta ◽  
Willem van Straten ◽  
Stefan Osłowski ◽  
Jayanta Roy ◽  
...  

AbstractWe present the results from nearly three years of monitoring of the variations in dispersion measure (DM) along the line-of-sight to 11 millisecond pulsars using the Giant Metrewave Radio Telescope (GMRT). These results demonstrate accuracies of single epoch DM estimates of the order of 5 × 10−4 cm−3 pc. A preliminary comparison with the Parkes Pulsar Timing Array (PPTA) data shows that the measured DM fluctuations are comparable. We show effects of DM variations due to the solar wind and solar corona and compare with the existing models.


2015 ◽  
Vol 5 (1) ◽  
pp. 61
Author(s):  
Safaa K. Kadhem ◽  
Paul Hewson ◽  
Irene Kaimi

In Bayesian model selection, the deviance information criterion (DIC) has become a widely used criterion. It is however not defined for the hidden Markov models (HMMs). In particular, the main challenge of applying the DIC for HMMs is that the observed likelihood function of such models is not available in closed form. A closed form for the observed likelihood function can be obtained either by summing all possible hidden states of the complete likelihood using the so-called the forward recursion, or via integrating out the hidden states in the conditional likelihood. Hence, we propose two versions of the DIC to the model choice problem in HMMs context, namely, the recursive deviance-based DIC and the conditional likelihood-based DIC. In this paper, we compare several normal HMMs after they are estimated by Bayesian MCMC method. We conduct a simulation study based on synthetic data generated under two assumptions, namely diversity in the heterogeneity level and also the number of states. We show that the recursive deviance-based DIC performs well in selecting the correct model compared with the conditional likelihood-based DIC that prefers the more complicated models. A real application involving the waiting time of Old Faithful Geyser data was also used to check those criteria. All the simulations were conducted in Python v.2.7.10, available from first author on request.


2019 ◽  
Vol 9 (20) ◽  
pp. 4364 ◽  
Author(s):  
Frédéric Bousefsaf ◽  
Alain Pruski ◽  
Choubeila Maaoui

Remote pulse rate measurement from facial video has gained particular attention over the last few years. Research exhibits significant advancements and demonstrates that common video cameras correspond to reliable devices that can be employed to measure a large set of biomedical parameters without any contact with the subject. A new framework for measuring and mapping pulse rate from video is presented in this pilot study. The method, which relies on convolutional 3D networks, is fully automatic and does not require any special image preprocessing. In addition, the network ensures concurrent mapping by producing a prediction for each local group of pixels. A particular training procedure that employs only synthetic data is proposed. Preliminary results demonstrate that this convolutional 3D network can effectively extract pulse rate from video without the need for any processing of frames. The trained model was compared with other state-of-the-art methods on public data. Results exhibit significant agreement between estimated and ground-truth measurements: the root mean square error computed from pulse rate values assessed with the convolutional 3D network is equal to 8.64 bpm, which is superior to 10 bpm for the other state-of-the-art methods. The robustness of the method to natural motion and increases in performance correspond to the two main avenues that will be considered in future works.


2017 ◽  
Vol 13 (S337) ◽  
pp. 410-411
Author(s):  
T. W. Scragg ◽  
B. W. Stappers ◽  
R. P. Breton ◽  
J. N. Smith ◽  
D. Adomako ◽  
...  

AbstractIn August 2017 a new radio telescope, the Ghana Radio Astronomy Observatory (GRAO), was officially inaugurated at Kuntunse, Ghana. The GRAO is a former satellite Earth station and now the first operational station in the African VLBI Network (AVN). The Jodrell Bank Centre for Astrophysics (JBCA), supported by the UK’s STFC/Newton Fund, has developed a new pulsar timing system (Hebe) for the GRAO. We present some aspects of the design of Hebe and an outline of the first pulsar detection at GRAO.


2000 ◽  
Vol 177 ◽  
pp. 57-60
Author(s):  
O.V. Doroshenko ◽  
Yu.P. Ilyasov ◽  
V.V. Oreshko

AbstractRegular timing observations of millisecond and binary pulsars are made with the 64-m radio telescope at Kalyazin (Russia). Filterbank 160-channel receiver is used for observations at 0.6 GHz in two circular orthogonal polarization. Precise local time service (based upon a rubidium standards and hydrogen maser) is used for measurements of Times-of-Arrival (TOA) from radio pulsars. A local time scale is compared by GPS and TV-systems with the basic AT-scales (UTC(USNO) and UTC(SU)) within an accuracy about 50nsper day. Recently the second 1.4 GHz receiver (250 kHz × 64 channels) was constructed and installed at Kalyazin radio telescope. There is a possibility to combine a part of the 1.4 GHz back-end with the 2.2 GHz front-end to produce timing observations at three frequencies simultaneously. We present a results of precise timing observations conducted by the Kalyazin pulsar system. Most of data were obtained at 0.6 GHz in 1997–1999. The data will be used for valuable applications in fundamental metrology, interstellar medium, general relativity and pulsar physics itself.


2016 ◽  
Vol 05 (04) ◽  
pp. 1641013 ◽  
Author(s):  
J. Kocz ◽  
W. Majid ◽  
L. White ◽  
L. Snedeker ◽  
M. Franco

The 70-m DSN’s Deep Space Station antenna 14 (DSS-14) at Goldstone has recently been outfitted with instrumentation to enable pulsar searching and timing operation. Systems capable of similar operations are undergoing installation at DSS-63, and are planned for DSS-43. The Goldstone system is the first of these to become operational with a 640[Formula: see text]MHz bandwidth stretching from 1325–1965[Formula: see text]MHz. Initial results from the pulsar timing pipeline show short-term residuals of [Formula: see text][Formula: see text]ns for pulsar B1937+21. Commissioning observations at DSS-14 to obtain a baseline set of time of arrival (TOA) measurements on several millisecond pulsars (MSPs) are currently underway.


2014 ◽  
Vol 440 (2) ◽  
pp. 1446-1457 ◽  
Author(s):  
Sarah J. Vigeland ◽  
Michele Vallisneri

Sign in / Sign up

Export Citation Format

Share Document