scholarly journals Radiation hydrodynamical simulations of the birth of intermediate-mass black holes in the first galaxies

2021 ◽  
Vol 508 (2) ◽  
pp. 1756-1767
Author(s):  
Muhammad A Latif ◽  
Sadegh Khochfar ◽  
Dominik Schleicher ◽  
Daniel J Whalen

ABSTRACT The leading contenders for the seeds of z > 6 quasars are direct-collapse black holes (DCBHs) forming in atomically cooled haloes at z ∼ 20. However, the Lyman–Werner (LW) UV background required to form DCBHs of 105 M⊙ are extreme, about 104 J21, and may have been rare in the early universe. Here we investigate the formation of intermediate-mass black holes (IMBHs) under moderate LW backgrounds of 100 and 500 J21, which were much more common at early times. These backgrounds allow haloes to grow to a few 106–107 M⊙ and virial temperatures of nearly 104 K before collapsing, but do not completely sterilize them of H2. Gas collapse then proceeds via Lyα and rapid H2 cooling at rates that are 10–50 times those in normal Pop III star-forming haloes, but less than those in purely atomically cooled haloes. Pop III stars accreting at such rates become blue and hot, and we find that their ionizing UV radiation limits their final masses to 1800–2800 M⊙ at which they later collapse to IMBHs. Moderate LW backgrounds thus produced IMBHs in far greater numbers than DCBHs in the early universe.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
C. Sivaram ◽  
Kenath Arun

There is a lot of current astrophysical evidence and interest in intermediate mass black holes (IMBH), ranging from a few hundred to several thousand solar masses. The active galaxy M82 and the globular cluster G1 in M31, for example, are known to host such objects. Here, we discuss several aspects of IMBH such as their expected luminosity, spectral nature of radiation, and associated jets. We also discuss possible scenarios for their formation including the effects of dynamical friction, and gravitational radiation. We also consider their formation in the early universe and also discuss the possibility of supermassive black holes forming from mergers of several IMBH and compare the relevant time scales involved with other scenarios.


2020 ◽  
Vol 15 (S359) ◽  
pp. 238-242
Author(s):  
Mar Mezcua

AbstractDetecting the seed black holes from which quasars formed is extremely challenging; however, those seeds that did not grow into supermassive should be found as intermediate-mass black holes (IMBHs) of 100 – 105 M⊙ in local dwarf galaxies. The use of deep multiwavelength surveys has revealed that a population of actively accreting IMBHs (low-mass AGN) exists in dwarf galaxies at least out to z ˜3. The black hole occupation fraction of these galaxies suggests that the early Universe seed black holes formed from direct collapse of gas, which is reinforced by the possible flattening of the black hole-galaxy scaling relations at the low-mass end. This scenario is however challenged by the finding that AGN feedback can have a strong impact on dwarf galaxies, which implies that low-mass AGN in dwarf galaxies might not be the untouched relics of the early seed black holes. This has important implications for seed black hole formation models.


2012 ◽  
Vol 425 (1) ◽  
pp. 460-469 ◽  
Author(s):  
B. McKernan ◽  
K. E. S. Ford ◽  
W. Lyra ◽  
H. B. Perets

2021 ◽  
Vol 502 (2) ◽  
pp. 2682-2700
Author(s):  
Abbas Askar ◽  
Melvyn B Davies ◽  
Ross P Church

ABSTRACT Supermassive black holes (SMBHs) are found in most galactic nuclei. A significant fraction of these nuclei also contains a nuclear stellar cluster (NSC) surrounding the SMBH. In this paper, we consider the idea that the NSC forms first, from the merger of several stellar clusters that may contain intermediate-mass black holes (IMBHs). These IMBHs can subsequently grow in the NSC and form an SMBH. We carry out N-body simulations of the simultaneous merger of three stellar clusters to form an NSC, and investigate the outcome of simulated runs containing zero, one, two, and three IMBHs. We find that IMBHs can efficiently sink to the centre of the merged cluster. If multiple merging clusters contain an IMBH, we find that an IMBH binary is likely to form and subsequently merge by gravitational wave emission. We show that these mergers are catalyzed by dynamical interactions with surrounding stars, which systematically harden the binary and increase its orbital eccentricity. The seed SMBH will be ejected from the NSC by the recoil kick produced when two IMBHs merge, if their mass ratio q ≳ 0.15. If the seed is ejected then no SMBH will form in the NSC. This is a natural pathway to explain those galactic nuclei that contain an NSC but apparently lack an SMBH, such as M33. However, if an IMBH is retained then it can seed the growth of an SMBH through gas accretion and tidal disruption of stars.


2015 ◽  
Vol 12 (S316) ◽  
pp. 240-245
Author(s):  
Nora Lützgendorf ◽  
Markus Kissler-Patig ◽  
Karl Gebhardt ◽  
Holger Baumgardt ◽  
Diederik Kruijssen ◽  
...  

AbstractThe study of intermediate-mass black holes (IMBHs) is a young and promising field of research. If IMBH exist, they could explain the rapid growth of supermassive black holes by acting as seeds in the early stage of galaxy formation. Formed by runaway collisions of massive stars in young and dense stellar clusters, intermediate-mass black holes could still be present in the centers of globular clusters, today. We measured the inner kinematic profiles with integral-field spectroscopy for 10 Galactic globular cluster and determined masses or upper limits of central black holes. In combination with literature data we further studied the positions of our results on known black-hole scaling relations (such as M• − σ) and found a similar but flatter correlation for IMBHs. Applying cluster evolution codes, the change in the slope could be explained with the stellar mass loss occurring in clusters in a tidal field over its life time. Furthermore, we present results from several numerical simulations on the topic of IMBHs and integral field units (IFUs). N-body simulations were used to simulate IFU data cubes. For the specific case of NGC 6388 we simulated two different IFU techniques and found that velocity dispersion measurements from individual velocities are strongly biased towards lower values due to blends of neighbouring stars and background light. In addition, we use the Astrophysical Multipurpose Software Environment (AMUSE) to combine gravitational physics, stellar evolution and hydrodynamics to simulate the accretion of stellar winds onto a black hole. We find that the S-stars need to provide very strong winds in order to explain the accretion rate in the galactic center.


2000 ◽  
Vol 52 (3) ◽  
pp. 533-537 ◽  
Author(s):  
Yoshiaki Taniguchi ◽  
Yasuhiro Shioya ◽  
Takeshi G. Tsuru ◽  
Satoru Ikeuchi

2014 ◽  
Vol 566 ◽  
pp. A58 ◽  
Author(s):  
S. Kamann ◽  
L. Wisotzki ◽  
M. M. Roth ◽  
J. Gerssen ◽  
T.-O. Husser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document