scholarly journals G17.8+16.7: A New Supernova Remnant

Author(s):  
M Araya ◽  
N Hurley-Walker ◽  
S Quirós-Araya

Abstract Non-thermal radio emission is detected in the region of the gamma-ray source FHES J1723.5 − 0501. The emission has an approximately circular shape 0.8○ in diameter. The observations confirm its nature as a new supernova remnant, We derive constraints on the source parameters using the radio data and gamma-ray observations of the region. The distance to the object is possibly in the range 1.4–3.5 kpc. An SNR age of the order of 10 kyr is compatible with the radio and GeV features, but an older or younger SNR cannot be ruled out. A simple one-zone leptonic model naturally explains the multi-wavelength non-thermal fluxes of the source at its location outside the Galactic plane.

1994 ◽  
Vol 269 (2) ◽  
pp. 294-300 ◽  
Author(s):  
J. B. Z. Whiteoak ◽  
L. E. Cram ◽  
M. I. Large

1999 ◽  
Vol 193 ◽  
pp. 112-113 ◽  
Author(s):  
Debra J. Wallace ◽  
Michael M. Shara ◽  
Anthony F.J. Moffat ◽  
Virpi S. Niemela

We present preliminary results of our HST-WFPC2 pc-survey of Wolf-Rayet stars. Initiated in 1996, the goal was to discover new companions to, and cluster/association memberships of, known Galactic WR stars. From these results, Niemela et al. (1998) have already established a firm link between non-thermal radio emission and the location of binary wind-collision zones for WR 146 (confirming radio data of Dougherty et al. 1996) and WR 147 (confirming radio and IR data of Williams et al. 1997; see also Williams, these Proceedings), and confirmed the presence of a binary companion for WR 86 (listed by Jeffers et al. 1963). Here, for the first time, we present new information on WR38, WR38a, and WR 104.


1986 ◽  
Vol 29 (4) ◽  
pp. 279-283 ◽  
Author(s):  
V. E. Gershenzon ◽  
V. G. Irisov ◽  
Yu. G. Trokhimovskii ◽  
V. S. �tkin

2007 ◽  
Vol 464 (2) ◽  
pp. 701-708 ◽  
Author(s):  
R. Blomme ◽  
M. De Becker ◽  
M. C. Runacres ◽  
S. Van Loo ◽  
D. Y. A. Setia Gunawan

2018 ◽  
Vol 483 (3) ◽  
pp. 4085-4085
Author(s):  
S J D Purser ◽  
R E Ainsworth ◽  
T P Ray ◽  
D A Green ◽  
A M Taylor ◽  
...  

1999 ◽  
Vol 193 ◽  
pp. 348-349
Author(s):  
Sean M. Dougherty

Radio observations of Wolf-Rayet stars currently available in the literature are examined to determine whether binarity is a common feature of WR systems with non-thermal emission. Among 24 stars with observed spectral index values, seven are definite non-thermal emitters, and six others possibly have composite thermal/non-thermal spectra. Stellar companions have been identified in 71% of the non-thermal emitters, strongly supporting a link between non-thermal emission and binarity.


2020 ◽  
Vol 500 (2) ◽  
pp. 2620-2626
Author(s):  
Jun Yang ◽  
Zsolt Paragi ◽  
Emanuele Nardini ◽  
Willem A Baan ◽  
Lulu Fan ◽  
...  

ABSTRACT When a black hole accretes close to the Eddington limit, the astrophysical jet is often accompanied by radiatively driven, wide-aperture and mildly relativistic winds. Powerful winds can produce significant non-thermal radio emission via shocks. Among the nearby critical accretion quasars, PDS 456 has a very massive black hole (about 1 billion solar masses), shows a significant star-forming activity (about 70 solar masses per year), and hosts exceptionally energetic X-ray winds (power up to 20 per cent of the Eddington luminosity). To probe the radio activity in this extreme accretion and feedback system, we performed very long baseline interferometric (VLBI) observations of PDS 456 at 1.66 GHz with the European VLBI Network and the enhanced Multi-Element Remotely Linked Interferometry Network. We find a rarely seen complex radio-emitting nucleus consisting of a collimated jet and an extended non-thermal radio emission region. The diffuse emission region has a size of about 360 pc and a radio luminosity about three times higher than that of the nearby extreme starburst galaxy Arp 220. The powerful nuclear radio activity could result either from a relic jet with a peculiar geometry (nearly along the line of sight) or more likely from diffuse shocks formed naturally by the existing high-speed winds impacting on high-density star-forming regions.


Sign in / Sign up

Export Citation Format

Share Document