scholarly journals Erratum: Deconstructing the Galaxy stellar mass function with UKIDSS and CANDELS: the impact of colour, structure and environment

2016 ◽  
Vol 458 (4) ◽  
pp. 3478-3478 ◽  
Author(s):  
Alice Mortlock ◽  
Christopher. J. Conselice ◽  
William G. Hartley ◽  
Ken Duncan ◽  
Caterina Lani ◽  
...  
2014 ◽  
Vol 447 (1) ◽  
pp. 2-24 ◽  
Author(s):  
Alice Mortlock ◽  
Christopher. J. Conselice ◽  
William G. Hartley ◽  
Ken Duncan ◽  
Caterina Lani ◽  
...  

2010 ◽  
Vol 524 ◽  
pp. A76 ◽  
Author(s):  
M. Bolzonella ◽  
K. Kovač ◽  
L. Pozzetti ◽  
E. Zucca ◽  
O. Cucciati ◽  
...  

2020 ◽  
Vol 501 (2) ◽  
pp. 1568-1590
Author(s):  
Lukas J Furtak ◽  
Hakim Atek ◽  
Matthew D Lehnert ◽  
Jacopo Chevallard ◽  
Stéphane Charlot

ABSTRACT We present new measurements of the very low mass end of the galaxy stellar mass function (GSMF) at z ∼ 6−7 computed from a rest-frame ultraviolet selected sample of dropout galaxies. These galaxies lie behind the six Hubble Frontier Field clusters and are all gravitationally magnified. Using deep Spitzer/IRAC and Hubble Space Telescope imaging, we derive stellar masses by fitting galaxy spectral energy distributions and explore the impact of different model assumptions and parameter degeneracies on the resulting GSMF. Our sample probes stellar masses down to $M_{\star }\gt 10^{6}\, \text{M}_{\odot}$ and we find the z ∼ 6−7 GSMF to be best parametrized by a modified Schechter function that allows for a turnover at very low masses. Using a Monte Carlo Markov chain analysis of the GSMF, including accurate treatment of lensing uncertainties, we obtain a relatively steep low-mass end slope $\alpha \simeq -1.96_{-0.08}^{+0.09}$ and a turnover at $\log (M_T/\text{M}_{\odot})\simeq 7.10_{-0.56}^{+0.17}$ with a curvature of $\beta \simeq 1.00_{-0.73}^{+0.87}$ for our minimum assumption model with constant star formation history (SFH) and low dust attenuation, AV ≤ 0.2. We find that the z ∼ 6−7 GSMF, in particular its very low mass end, is significantly affected by the assumed functional form of the star formation history and the degeneracy between stellar mass and dust attenuation. For example, the low-mass end slope ranges from $\alpha \simeq -1.82_{-0.07}^{+0.08}$ for an exponentially rising SFH to $\alpha \simeq -2.34_{-0.10}^{+0.11}$ when allowing AV of up to 3.25. Future observations at longer wavelengths and higher angular resolution with the James Webb Space Telescope are required to break these degeneracies and to robustly constrain the stellar mass of galaxies on the extreme low-mass end of the GSMF.


2018 ◽  
Vol 620 ◽  
pp. A7 ◽  
Author(s):  
V. Guglielmo ◽  
B. M. Poggianti ◽  
B. Vulcani ◽  
C. Adami ◽  
F. Gastaldello ◽  
...  

Context. The fraction of galaxies bound in groups in the nearby Universe is high (50% at z ~ 0). Systematic studies of galaxy properties in groups are important in order to improve our understanding of the evolution of galaxies and of the physical phenomena occurring within this environment. Aims. We have built a complete spectrophotometric sample of galaxies within X-ray detected, optically spectroscopically confirmed groups and clusters (G&C), covering a wide range of halo masses at z ≤ 0.6. Methods. In the context of the XXL survey, we analyse a sample of 164 G&C in the XXL-North region (XXL-N), at z ≤ 0.6, with a wide range of virial masses (1.24 × 1013 ≤ M500,scal(M⊙) ≤ 6.63 × 1014) and X-ray luminosities ((2.27 × 1041 ≤ L500,scalXXL(erg s−1) ≤ 2.15 × 1044)). The G&C are X-ray selected and spectroscopically confirmed. We describe the membership assignment and the spectroscopic completeness analysis, and compute stellar masses. As a first scientific exploitation of the sample, we study the dependence of the galaxy stellar mass function (GSMF) on global environment. Results. We present a spectrophotometric characterisation of the G&C and their galaxies. The final sample contains 132 G&C, 22 111 field galaxies and 2225 G&C galaxies with r-band magnitude <20. Of the G&C, 95% have at least three spectroscopic members, and 70% at least ten. The shape of the GSMF seems not to depend on environment (field versus G&C) or X-ray luminosity (used as a proxy for the virial mass of the system). These results are confirmed by the study of the correlation between mean stellar mass of G&C members and L500,scalXXL. We release the spectrophotometric catalogue of galaxies with all the quantities computed in this work. Conclusions. As a first homogeneous census of galaxies within X-ray spectroscopically confirmed G&C at these redshifts, this sample will allow environmental studies of the evolution of galaxy properties.


2020 ◽  
Vol 499 (1) ◽  
pp. 631-652
Author(s):  
J A Vázquez-Mata ◽  
J Loveday ◽  
S D Riggs ◽  
I K Baldry ◽  
L J M Davies ◽  
...  

ABSTRACT How do galaxy properties (such as stellar mass, luminosity, star formation rate, and morphology) and their evolution depend on the mass of their host dark matter halo? Using the Galaxy and Mass Assembly group catalogue, we address this question by exploring the dependence on host halo mass of the luminosity function (LF) and stellar mass function (SMF) for grouped galaxies subdivided by colour, morphology, and central/satellite. We find that spheroidal galaxies in particular dominate the bright and massive ends of the LF and SMF, respectively. More massive haloes host more massive and more luminous central galaxies. The satellites LF and SMF, respectively, show a systematic brightening of characteristic magnitude, and increase in characteristic mass, with increasing halo mass. In contrast to some previous results, the faint-end and low-mass slopes show little systematic dependence on halo mass. Semi-analytic models and simulations show similar or enhanced dependence of central mass and luminosity on halo mass. Faint and low-mass simulated satellite galaxies are remarkably independent of halo mass, but the most massive satellites are more common in more massive groups. In the first investigation of low-redshift LF and SMF evolution in group environments, we find that the red/blue ratio of galaxies in groups has increased since redshift z ≈ 0.3 relative to the field population. This observation strongly suggests that quenching of star formation in galaxies as they are accreted into galaxy groups is a significant and ongoing process.


Author(s):  
Aldo Rodríguez-Puebla ◽  
A. R. Calette ◽  
Vladimir Avila-Reese ◽  
Vicente Rodriguez-Gomez ◽  
Marc Huertas-Company

Abstract We report the bivariate $\rm HI$ - and $\rm H_{2}$ -stellar mass distributions of local galaxies in addition of an inventory of galaxy mass functions, MFs, for $\rm HI$ , $\rm H_{2}$ , cold gas, and baryonic mass, separately into early- and late-type galaxies. The MFs are determined using the $\rm HI$ and $\rm H_{2}$ conditional distributions and the galaxy stellar mass function (GSMF). For the conditional distributions we use the results from the compilation presented in Calette et al. [(2018) RMxAA, 54, 443.]. For determining the GSMF from $M_{*}\sim3\times10^{7}$ to $3\times10^{12}\ \text{M}_{\odot}$ , we combine two spectroscopic samples from the Sloan Digital Sky Survey at the redshift range $0.0033<z<0.2$ . We find that the low-mass end slope of the GSMF, after correcting from surface brightness incompleteness, is $\alpha\approx-1.4$ , consistent with previous determinations. The obtained $\rm HI\,$ MFs agree with radio blind surveys. Similarly, the $\rm H_{2}\,$ MFs are consistent with CO follow-up optically-selected samples. We estimate the impact of systematics due to mass-to-light ratios and find that our MFs are robust against systematic errors. We deconvolve our MFs from random errors to obtain the intrinsic MFs. Using the MFs, we calculate cosmic density parameters of all the baryonic components. Baryons locked inside galaxies represent 5.4% of the universal baryon content, while $\sim\! 96\%$ of the $\rm HI$ and $\rm H_{2}$ mass inside galaxies reside in late-type morphologies. Our results imply cosmic depletion times of $\rm H_{2}$ and total neutral H in late-type galaxies of $\sim\!1.3$ and 7.2 Gyr, respectively, which shows that late type galaxies are on average inefficient in converting $\rm H_{2}$ into stars and in transforming $\rm HI$ gas into $\rm H_{2}$ . Our results provide a fully self-consistent empirical description of galaxy demographics in terms of the bivariate gas–stellar mass distribution and their projections, the MFs. This description is ideal to compare and/or to constrain galaxy formation models.


2020 ◽  
Vol 496 (3) ◽  
pp. 3169-3181
Author(s):  
Makoto Ando ◽  
Kazuhiro Shimasaku ◽  
Rieko Momose

ABSTRACT A proto-cluster core is the most massive dark matter halo (DMH) in a given proto-cluster. To reveal the galaxy formation in core regions, we search for proto-cluster cores at z ∼ 2 in ${\sim}1.5\, \mathrm{deg}^{2}$ of the COSMOS field. Using pairs of massive galaxies [log (M*/M⊙) ≥ 11] as tracers of cores, we find 75 candidate cores, among which 54 per cent are estimated to be real. A clustering analysis finds that these cores have an average DMH mass of $2.6_{-0.8}^{+0.9}\times 10^{13}\, \mathrm{M}_{\odot }$, or $4.0_{-1.5}^{+1.8}\, \times 10^{13} \, \mathrm{M}_{\odot }$ after contamination correction. The extended Press–Schechter model shows that their descendant mass at z = 0 is consistent with Fornax-like or Virgo-like clusters. Moreover, using the IllustrisTNG simulation, we confirm that pairs of massive galaxies are good tracers of DMHs massive enough to be regarded as proto-cluster cores. We then derive the stellar mass function (SMF) and the quiescent fraction for member galaxies of the 75 candidate cores. We find that the core galaxies have a more top-heavy SMF than field galaxies at the same redshift, showing an excess at log (M*/M⊙) ≳ 10.5. The quiescent fraction, $0.17_{-0.04}^{+0.04}$ in the mass range 9.0 ≤ log (M*/M⊙) ≤ 11.0, is about three times higher than that of field counterparts, giving an environmental quenching efficiency of $0.13_{-0.04}^{+0.04}$. These results suggest that stellar mass assembly and quenching are accelerated as early as z ∼ 2 in proto-cluster cores.


2013 ◽  
Vol 429 (3) ◽  
pp. 2098-2103 ◽  
Author(s):  
Stephen M. Wilkins ◽  
Tiziana Di Matteo ◽  
Rupert Croft ◽  
Nishikanta Khandai ◽  
Yu Feng ◽  
...  

2022 ◽  
Vol 924 (2) ◽  
pp. 56
Author(s):  
Alex Sicilia ◽  
Andrea Lapi ◽  
Lumen Boco ◽  
Mario Spera ◽  
Ugo N. Di Carlo ◽  
...  

Abstract This is the first paper in a series aimed at modeling the black hole (BH) mass function, from the stellar to the intermediate to the (super)massive regime. In the present work, we focus on stellar BHs and provide an ab initio computation of their mass function across cosmic times; we mainly consider the standard, and likely dominant, production channel of stellar-mass BHs constituted by isolated single/binary star evolution. Specifically, we exploit the state-of-the-art stellar and binary evolutionary code SEVN, and couple its outputs with redshift-dependent galaxy statistics and empirical scaling relations involving galaxy metallicity, star formation rate and stellar mass. The resulting relic mass function dN / dVd log m • as a function of the BH mass m • features a rather flat shape up to m • ≈ 50 M ⊙ and then a log-normal decline for larger masses, while its overall normalization at a given mass increases with decreasing redshift. We highlight the contribution to the local mass function from isolated stars evolving into BHs and from binary stellar systems ending up in single or binary BHs. We also include the distortion on the mass function induced by binary BH mergers, finding that it has a minor effect at the high-mass end. We estimate a local stellar BH relic mass density of ρ • ≈ 5 × 107 M ⊙ Mpc−3, which exceeds by more than two orders of magnitude that in supermassive BHs; this translates into an energy density parameter Ω• ≈ 4 × 10−4, implying that the total mass in stellar BHs amounts to ≲1% of the local baryonic matter. We show how our mass function for merging BH binaries compares with the recent estimates from gravitational wave observations by LIGO/Virgo, and discuss the possible implications for dynamical formation of BH binaries in dense environments like star clusters. We address the impact of adopting different binary stellar evolution codes (SEVN and COSMIC) on the mass function, and find the main differences to occur at the high-mass end, in connection with the numerical treatment of stellar binary evolution effects. We highlight that our results can provide a firm theoretical basis for a physically motivated light seed distribution at high redshift, to be implemented in semi-analytic and numerical models of BH formation and evolution. Finally, we stress that the present work can constitute a starting point to investigate the origin of heavy seeds and the growth of (super)massive BHs in high-redshift star-forming galaxies, that we will pursue in forthcoming papers.


Sign in / Sign up

Export Citation Format

Share Document