scholarly journals The progenitors of compact-object binaries: impact of metallicity, common envelope and natal kicks

2018 ◽  
Vol 480 (2) ◽  
pp. 2011-2030 ◽  
Author(s):  
Nicola Giacobbo ◽  
Michela Mapelli
2004 ◽  
Vol 194 ◽  
pp. 266-266
Author(s):  
T. Bulik ◽  
R. Moderski ◽  
K. Belczyński

The masses of compact object (black hole, neutron star) binaries depend strongly on the parameters describing stellar evolution. Such masses or their functions can be measured using gravitational waves or through microlensing searches. We analyze an example of the varying common envelope efficiency and show the dependence of distributions of the measured chirp masses in gravitational waves mass ratios through microlensing taking into account the relevant selection effects.


2020 ◽  
Vol 495 (2) ◽  
pp. 2179-2204 ◽  
Author(s):  
Greg Salvesen ◽  
Supavit Pokawanvit

ABSTRACT Of the known microquasars, V4641 Sgr boasts the most severe lower limit (>52°) on the misalignment angle between the relativistic jet axis and the binary orbital angular momentum. Assuming the jet and black hole spin axes coincide, we attempt to explain the origin of this extreme spin–orbit misalignment with a natal kick model, whereby an aligned binary system becomes misaligned by a supernova kick imparted to the newborn black hole. The model inputs are the kick velocity distribution, which we measure customized to V4641 Sgr, and the immediate pre/post-supernova binary system parameters. Using a grid of binary stellar evolution models, we determine post-supernova configurations that evolve to become consistent with V4641 Sgr today and obtain the corresponding pre-supernova configurations by using standard prescriptions for common envelope evolution. Using each of these potential progenitor system parameter sets as inputs, we find that a natal kick struggles to explain the origin of the V4641 Sgr spin–orbit misalignment. Consequently, we conclude that evolutionary pathways involving a standard common envelope phase followed by a supernova kick are highly unlikely for V4641 Sgr. An alternative interpretation is that the jet axis does not reliably trace the black hole spin axis. Our results raise concerns about compact object merger statistics gleaned from binary population synthesis models, which rely on unverified prescriptions for common envelope evolution and natal kicks. We also challenge the spin–orbit alignment assumption routinely invoked to measure black hole spin magnitudes.


2018 ◽  
Vol 613 ◽  
pp. L10 ◽  
Author(s):  
Lidia M. Oskinova ◽  
Tomasz Bulik ◽  
Ada Nebot Gómez-Morán

Context. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims. We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods. We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results. Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC 4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. Conclusions. The massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.


2020 ◽  
Vol 497 (2) ◽  
pp. 2057-2065 ◽  
Author(s):  
Diego López-Cámara ◽  
Enrique Moreno Méndez ◽  
Fabio De Colle

ABSTRACT The evolution and physics of the common envelope (CE) phase are still not well understood. Jets launched from a compact object during this stage may define the evolutionary outcome of the binary system. We focus on the case in which jets are launched from a neutron star (NS) engulfed in the outer layers of a red giant (RG). We run a set of three-dimensional hydrodynamical simulations of jets with different luminosities and inclinations. The luminosity of the jet is self-regulated by the mass accretion rate and an efficiency η. Depending on the value of η the jet can break out of the previously formed bulge (‘successful jet’) and aligns against the incoming wind, in turn, it will realign in favour of the direction of the wind. The jet varies in size and orientation and may present quiescent and active epochs. The inclination of the jet and the Coriolis and centrifugal forces, only slightly affect the global evolution. As the accretion is hypercritical, and the specific angular momentum is above the critical value for the formation of a disc, we infer the formation of a disc and launching of jets. The discs’ mass and size would be ∼10−2 M⊙ and ≳1010 cm, and it may have rings with different rotation directions. In order to have a successful jet from a white dwarf, the ejection process needs to be very efficient (η ∼ 0.5). For main-sequence stars, there is not enough energy reservoir to launch a successful jet.


2020 ◽  
Vol 494 (2) ◽  
pp. 2327-2336 ◽  
Author(s):  
Xinyu Li ◽  
Philip Chang ◽  
Yuri Levin ◽  
Christopher D Matzner ◽  
Philip J Armitage

ABSTRACT A compact object moving relative to surrounding gas accretes material and perturbs the density of gas in its vicinity. In the classical picture of Bondi–Hoyle–Lyttleton accretion, the perturbation takes the form of an overdense wake behind the object, which exerts a dynamical friction drag. We use hydrodynamic simulations to investigate how the accretion rate and strength of dynamical friction are modified by the presence of outflow from the compact object. We show that the destruction of the wake by an outflow reduces dynamical friction, and reverses its sign when the outflow is strong enough, in good quantitative agreement with analytic calculations. For a strong isotropic outflow, the outcome on scales that we have simulated is a negative dynamical friction, i.e. net acceleration. For jet-like outflows driven by reprocessed accretion, both the rate of accretion and the magnitude of dynamical friction drop for more powerful jets. The accretion rate is strongly intermittent when the jet points to the same direction as the motion of the compact object. The dynamical effects of outflows may be important for the evolution of compact objects during the common envelope phase of binary systems, and for accreting compact objects and massive stars encountering active galactic nucleus discs.


1998 ◽  
Vol 188 ◽  
pp. 388-389
Author(s):  
A. Kubota ◽  
K. Makishima ◽  
T. Dotani ◽  
H. Inoue ◽  
K. Mitsuda ◽  
...  

About 10 X-ray binaries in our Galaxy and LMC/SMC are considered to contain black hole candidates (BHCs). Among these objects, Cyg X-1 was identified as the first BHC, and it has led BHCs for more than 25 years(Oda 1977, Liang and Nolan 1984). It is a binary system composed of normal blue supergiant star and the X-ray emitting compact object. The orbital kinematics derived from optical observations indicates that the compact object is heavier than ~ 4.8 M⊙ (Herrero 1995), which well exceeds the upper limit mass for a neutron star(Kalogora 1996), where we assume the system consists of only two bodies. This has been the basis for BHC of Cyg X-1.


Author(s):  
Manuel Arca Sedda ◽  
Christopher P. L. Berry ◽  
Karan Jani ◽  
Pau Amaro-Seoane ◽  
Pierre Auclair ◽  
...  

AbstractSince 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $\sim 10$ ∼ 10 –103 Hz band of ground-based observatories and the $\sim 10^{-4}$ ∼ 1 0 − 4 –10− 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ($\sim 10^{2}$ ∼ 1 0 2 –104M⊙) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.


Sign in / Sign up

Export Citation Format

Share Document