scholarly journals Explosions Driven by the Coalescence of a Compact Object with the Core of a Massive-star Companion inside a Common Envelope: Circumstellar Properties, Light Curves, and Population Statistics

2020 ◽  
Vol 892 (1) ◽  
pp. 13 ◽  
Author(s):  
Sophie Lund Schrøder ◽  
Morgan MacLeod ◽  
Abraham Loeb ◽  
Alejandro Vigna-Gómez ◽  
Ilya Mandel
1996 ◽  
Vol 165 ◽  
pp. 141-149
Author(s):  
P.C. Joss

The presence of a close binary companion can affect the evolution of a massive star through one or more episodes of mass transfer, or by merger in a common-envelope phase. Monte Carlo calculations indicate that ∼20–35% of all massive supernovae are affected by such processes, and that a substantial fraction of these events will be supernovae of type II. The properties of the progenitor star, the distribution of circumstellar material, the peak supernova luminosity, the shape of the supernova light curve, and other observable features of the supernova event can be affected by prior binary membership. Binary interactions may be the cause of much of the variability among type II supernova light curves. In particular, many of the peculiarities of SN 1987A and SN 1993J may well have resulted from the prior duplicity of the progenitors.


2018 ◽  
Vol 613 ◽  
pp. L10 ◽  
Author(s):  
Lidia M. Oskinova ◽  
Tomasz Bulik ◽  
Ada Nebot Gómez-Morán

Context. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims. We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods. We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results. Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC 4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. Conclusions. The massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.


2020 ◽  
Vol 641 ◽  
pp. A133
Author(s):  
N. Scepi ◽  
G. Lesur ◽  
G. Dubus ◽  
J. Jacquemin-Ide

Context. Dwarf novæ (DNe) and low mass X-ray binaries (LMXBs) show eruptions that are thought to be due to a thermal-viscous instability in their accretion disk. These eruptions provide constraints on angular momentum transport mechanisms. Aims. We explore the idea that angular momentum transport could be controlled by the dynamical evolution of the large-scale magnetic field. We study the impact of different prescriptions for the magnetic field evolution on the dynamics of the disk. This is a first step in confronting the theory of magnetic field transport with observations. Methods. We developed a version of the disk instability model that evolves the density, the temperature, and the large-scale vertical magnetic flux simultaneously. We took into account the accretion driven by turbulence or by a magnetized outflow with prescriptions taken, respectively, from shearing box simulations or self-similar solutions of magnetized outflows. To evolve the magnetic flux, we used a toy model with physically motivated prescriptions that depend mainly on the local magnetization β, where β is the ratio of thermal pressure to magnetic pressure. Results. We find that allowing magnetic flux to be advected inwards provides the best agreement with DNe light curves. This leads to a hybrid configuration with an inner magnetized disk, driven by angular momentum losses to an MHD outflow, sharply transiting to an outer weakly-magnetized turbulent disk where the eruptions are triggered. The dynamical impact is equivalent to truncating a viscous disk so that it does not extend down to the compact object, with the truncation radius dependent on the magnetic flux and evolving as Ṁ−2/3. Conclusions. Models of DNe and LMXB light curves typically require the outer, viscous disk to be truncated in order to match the observations. There is no generic explanation for this truncation. We propose that it is a natural outcome of the presence of large-scale magnetic fields in both DNe and LMXBs, with the magnetic flux accumulating towards the center to produce a magnetized disk with a fast accretion timescale.


Author(s):  
M S Munoz ◽  
G A Wade ◽  
Y Nazé ◽  
J Puls ◽  
S Bagnulo ◽  
...  

Abstract In this paper, we investigate the photometric variability of magnetic O-type stars. Such stars possess oblique, predominantly dipolar magnetic fields that confine their winds roughly axisymmetrically about the magnetic equator, thus forming a magnetosphere. We interpret their photometric variability as phase-dependent magnetospheric occultations. For massive star winds dominated by electron scattering opacity in the optical and NIR, we can compute synthetic light curves from simply knowing the magnetosphere’s mass density distribution. We exploit the newly-developed Analytical Dynamical Magnetosphere model (ADM) in order to obtain the predicted circumstellar density structures of magnetic O-type stars. The simplicity in our light curve synthesis model allows us to readily conduct a parameter space study. For validation purposes, we first apply our algorithm to HD 191612, the prototypical Of?p star. Next, we attempt to model the photometric variability of the Of?p-type stars identified in the Magellanic Clouds using OGLE photometry. We evaluate the compatibility of the ADM predictions with the observed photometric variations, and discuss the magnetic field properties that are implied by our modelling.


Author(s):  
Binyamin V Naiman ◽  
Efrat Sabach ◽  
Avishai Gilkis ◽  
Noam Soker

Abstract We simulate the evolution of binary systems with a massive primary star of 15M⊙ where we introduce an enhanced mass loss due to jets that the secondary star might launch, and find that in many cases the enhanced mass loss brings the binary system to experience the grazing envelope evolution (GEE) and form a progenitor of Type IIb supernova (SN IIb). The jets, the Roche lobe overflow (RLOF), and a final stellar wind remove most of the hydrogen-rich envelope, leaving a blue-compact SN IIb progenitor. In many cases without this jet-driven mass loss the system enters a common envelope evolution (CEE) and does not form a SN IIb progenitor. We use the stellar evolutionary code MESA binary and mimic the jet-driven mass loss with a simple prescription and some free parameters. Our results show that the jet-driven mass loss, that some systems have during the GEE, increases the parameter space for stellar binary systems to form SN IIb progenitors. We estimate that the binary evolution channel with GEE contributes about a quarter of all SNe IIb, about equal to the contribution of each of the other three channels, binary evolution without a GEE, fatal CEE (where the secondary star merges with the core of the giant primary star), and the single star channel.


2019 ◽  
Vol 630 ◽  
pp. A75 ◽  
Author(s):  
A. Pastorello ◽  
E. Mason ◽  
S. Taubenberger ◽  
M. Fraser ◽  
G. Cortini ◽  
...  

We present extensive datasets for a class of intermediate-luminosity optical transients known as luminous red novae. They show double-peaked light curves, with an initial rapid luminosity rise to a blue peak (at −13 to −15 mag), which is followed by a longer-duration red peak that sometimes is attenuated, resembling a plateau. The progenitors of three of them (NGC 4490−2011OT1, M 101−2015OT1, and SNhunt248), likely relatively massive blue to yellow stars, were also observed in a pre-eruptive stage when their luminosity was slowly increasing. Early spectra obtained during the first peak show a blue continuum with superposed prominent narrow Balmer lines, with P Cygni profiles. Lines of Fe II are also clearly observed, mostly in emission. During the second peak, the spectral continuum becomes much redder, Hα is barely detected, and a forest of narrow metal lines is observed in absorption. Very late-time spectra (∼6 months after blue peak) show an extremely red spectral continuum, peaking in the infrared (IR) domain. Hα is detected in pure emission at such late phases, along with broad absorption bands due to molecular overtones (such as TiO, VO). We discuss a few alternative scenarios for luminous red novae. Although major instabilities of single massive stars cannot be definitely ruled out, we favour a common envelope ejection in a close binary system, with possibly a final coalescence of the two stars. The similarity between luminous red novae and the outburst observed a few months before the explosion of the Type IIn SN 2011ht is also discussed.


2018 ◽  
Vol 14 (S343) ◽  
pp. 540-541
Author(s):  
Bo Wang

AbstractWD+AGB star systems have been suggested as an alternative way for producing type Ia supernovae (SNe Ia), known as the core-degenerate (CD) scenario. In the CD scenario, SNe Ia are produced at the final phase during the evolution of common-envelope through a merger between a carbon-oxygen (CO) WD and the CO core of an AGB secondary. However, the rates of SNe Ia from this scenario are still uncertain. In this work, I carried out a detailed investigation on the CD scenario based on a binary population synthesis approach. I found that the Galactic rates of SNe Ia from this scenario are not more than 20% of total SNe Ia due to more careful treatment of mass transfer, and that their delay times are in the range of ∼90 − 2500 Myr, mainly contributing to the observed SNe Ia with short and intermediate delay times.


Sign in / Sign up

Export Citation Format

Share Document