scholarly journals Infrared outbursts as potential tracers of common-envelope events in high-mass X-ray binary formation

2018 ◽  
Vol 613 ◽  
pp. L10 ◽  
Author(s):  
Lidia M. Oskinova ◽  
Tomasz Bulik ◽  
Ada Nebot Gómez-Morán

Context. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims. We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods. We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results. Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC 4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. Conclusions. The massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.

2018 ◽  
Vol 14 (S346) ◽  
pp. 455-458
Author(s):  
Zhao-yu Zuo

AbstractUsing an evolutionary population synthesis code, we modeled the universal, featureless X-ray luminosity function of high-mass X-ray binaries (HMXBs) in star-forming galaxies. We put constraints on the natal kicks, super-Eddington accretion factor, as well as common envelope prescriptions usually adopted (i.e., the αCE formalism and the γ algorithm), and presented the detailed properties of HMXBs under different models, which may be investigated further by future high-resolution X-ray and optical observations.


2018 ◽  
Vol 14 (S346) ◽  
pp. 358-361
Author(s):  
Babis Politakis ◽  
Andreas Zezas ◽  
Jeff J. Andrews ◽  
Stephen J. Williams

AbstractWe analyse the vertical distribution of High Mass X-ray Binaries (HMXBs) in NGC 55, the nearest edge-on galaxy to the Milky Way. Our analysis reveals significant spatial offsets of HMXBs from the star forming regions, greater than those observed in the SMC and the LMC but similar with the Milky Way. The spatial offsets can be explained by a momentum kick the X-ray binaries receive during the formation of the compact object. The difference between the scale height of the vertical distribution of HMXBs and the vertical distribution of star-forming activity is 0.48±0.04 kpc. The centre-of-mass velocity of the distribution of HMXBs in NGC 55 is moving at a velocity of 52.4±11.4 km s−1, greater than the corresponding velocity of HMXBs in the SMC and LMC, but consistent with velocities of Milky Way HMXBs.


2019 ◽  
Vol 490 (4) ◽  
pp. 5494-5502 ◽  
Author(s):  
C Maitra ◽  
F Haberl ◽  
M D Filipović ◽  
A Udalski ◽  
P J Kavanagh ◽  
...  

ABSTRACT We report the discovery of a very young high-mass X-ray binary (HMXB) system associated with the supernova remnant (SNR) MCSNR J0513-6724 in the Large Magellanic Cloud (LMC), using XMM–Newton X-ray observations. The HMXB is located at the geometrical centre of extended soft X-ray emission, which we confirm as an SNR. The HMXB spectrum is consistent with an absorbed power law with spectral index ∼1.6 and a luminosity of 7 × 1033 erg s−1 (0.2–12 keV). Tentative X-ray pulsations are observed with a periodicity of 4.4 s and the OGLE I-band light curve of the optical counterpart from more than 17.5 yr reveals a period of 2.2324 ± 0.0003 d, which we interpret as the orbital period of the binary system. The X-ray spectrum of the SNR is consistent with non-equilibrium shock models as expected for young/less evolved SNRs. From the derived ionization time-scale we estimate the age of the SNR to be <6 kyr. The association of the HMXB with the SNR makes it the youngest HMXB, in the earliest evolutionary stage known to date. An HMXB as young as this can switch on as an accreting pulsar only when the spin period has reached a critical value. Under this assumption, we obtain an upper limit to the magnetic field of <5 × 1011 G. This implies several interesting possibilities including magnetic field burial, possibly by an episode of post-supernova hyper-critical accretion. Since these fields are expected to diffuse out on a time-scale of 103–104 yr, the discovery of a very young HMXB can provide us the unique opportunity to observe the evolution of the observable magnetic field for the first time in X-ray binaries.


2020 ◽  
Vol 496 (2) ◽  
pp. 1990-1999 ◽  
Author(s):  
V M Rivilla ◽  
L Colzi ◽  
F Fontani ◽  
M Melosso ◽  
P Caselli ◽  
...  

ABSTRACT We present the study of deuteration of cyanoacetylene (HC3N) towards a sample of 28 high-mass star-forming cores divided into different evolutionary stages, from starless to evolved protostellar cores. We report for the first time the detection of DC3N towards 15 high-mass cores. The abundance ratios of DC3N with respect HC3N range in the interval 0.003–0.022, lower than those found in low-mas protostars and dark clouds. No significant trend with the evolutionary stage, or with the kinetic temperature of the region, has been found. We compare the level of deuteration of HC3N with those of other molecules towards the same sample, finding weak correlation with species formed only or predominantly in gas phase (N2H+ and HNC, respectively), and no correlation with species formed only or predominantly on dust grains (CH3OH and NH3, respectively). We also present a single-dish map of DC3N towards the protocluster IRAS 05358+3543, which shows that DC3N traces an extended envelope (∼0.37 pc) and peaks towards two cold condensations separated from the positions of the protostars and the dust continuum. The observations presented in this work suggest that deuteration of HC3N is produced in the gas of the cold outer parts of massive star-forming clumps, giving us an estimate of the deuteration factor prior to the formation of denser gas.


Author(s):  
A J Rigby ◽  
N Peretto ◽  
R Adam ◽  
P Ade ◽  
M Anderson ◽  
...  

Abstract Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope which is mapping ≈2 deg2 of the inner Galactic plane (GP), centred on ℓ = 23${_{.}^{\circ}}$9, b = 0${_{.}^{\circ}}$05, as well as targets in Taurus and Ophiuchus in 1.15 and 2.00 mm continuum wavebands. In this paper we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15 mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously-undetected clumps. Approximately 80 per cent of these new clumps are 70 μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.


2018 ◽  
Vol 609 ◽  
pp. A129 ◽  
Author(s):  
L. Colzi ◽  
F. Fontani ◽  
P. Caselli ◽  
C. Ceccarelli ◽  
P. Hily-Blant ◽  
...  

The ratio between the two stable isotopes of nitrogen, 14N and 15N, is well measured in the terrestrial atmosphere (~272), and for the pre-solar nebula (~441, deduced from the solar wind). Interestingly, some pristine solar system materials show enrichments in 15N with respect to the pre-solar nebula value. However, it is not yet clear if and how these enrichments are linked to the past chemical history because we have only a limited number of measurements in dense star-forming regions. In this respect, dense cores, which are believed to be the precursors of clusters and also contain intermediate- and high-mass stars, are important targets because the solar system was probably born within a rich stellar cluster, and such clusters are formed in high-mass star-forming regions. The number of observations in such high-mass dense cores has remained limited so far. In this work, we show the results of IRAM-30 m observations of the J = 1−0 rotational transition of the molecules HCN and HNC and their 15N-bearing counterparts towards 27 intermediate- and high-mass dense cores that are divided almost equally into three evolutionary categories: high-mass starless cores, high-mass protostellar objects, and ultra-compact Hii regions. We have also observed the DNC(2–1) rotational transition in order to search for a relation between the isotopic ratios D/H and 14N/15N. We derive average 14N/15N ratios of 359 ± 16 in HCN and of 438 ± 21 in HNC, with a dispersion of about 150–200. We find no trend of the 14N/15N ratio with evolutionary stage. This result agrees with what has been found for N2H+ and its isotopologues in the same sources, although the 14N/15N ratios from N2H+ show a higher dispersion than in HCN/HNC, and on average, their uncertainties are larger as well. Moreover, we have found no correlation between D/H and 14N/15N in HNC. These findings indicate that (1) the chemical evolution does not seem to play a role in the fractionation of nitrogen, and that (2) the fractionation of hydrogen and nitrogen in these objects is not related.


2016 ◽  
Vol 12 (S329) ◽  
pp. 355-358
Author(s):  
Peter Kretschmar ◽  
Silvia Martínez-Núñez ◽  
Enrico Bozzo ◽  
Lidia M. Oskinova ◽  
Joachim Puls ◽  
...  

AbstractStrong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretor’s gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.


2018 ◽  
Vol 14 (S346) ◽  
pp. 489-499
Author(s):  
Douglas R. Gies

AbstractThe discovery of gravity waves from the mergers of black hole binaries has focused the astronomical community on the high mass X-ray binaries (HMXBs) as the potential progenitors of close pairs of compact stars. This symposium gathered experts in observational and theoretical work for a very timely review of our understanding of the processes that drive the X-ray luminosity of the diverse kinds of binaries and what evolutionary stages are revealed in the observed cases. Here I offer a condensed summary of some of the results about massive star properties, the observational categories of HMXBs, their accretion processes, their numbers in the Milky Way and other galaxies, and how they may be related to the compact binaries that merge in a burst of gravity waves.


2020 ◽  
Vol 494 (1) ◽  
pp. 941-957 ◽  
Author(s):  
Peter Senchyna ◽  
Daniel P Stark ◽  
Jordan Mirocha ◽  
Amy E Reines ◽  
Stéphane Charlot ◽  
...  

ABSTRACT Despite significant progress both observationally and theoretically, the origin of high-ionization nebular He ii emission in galaxies dominated by stellar photoionization remains unclear. Accretion-powered radiation from high-mass X-ray binaries (HMXBs) is still one of the leading proposed explanations for the missing He+-ionizing photons, but this scenario has yet to be conclusively tested. In this paper, we present nebular line predictions from a grid of photoionization models with input spectral energy distributions containing the joint contribution of both stellar atmospheres and a multicolour disc model for HMXBs. This grid demonstrates that HMXBs are inefficient producers of the photons necessary to power He ii, and can only boost this line substantially in galaxies with HMXB populations large enough to power X-ray luminosities of 1042 erg s−1 per unit star formation rate (SFR). To test this, we assemble a sample of 11 low-redshift star-forming galaxies with high-quality constraints on both X-ray emission from Chandra and He ii emission from deep optical spectra, including new observations with the MMT. These data reveal that the HMXB populations of these nearby systems are insufficient to account for the observed He ii strengths, with typical X-ray luminosities or upper limits thereon of only 1040–1041 erg s−1 per SFR. This indicates that HMXBs are not the dominant source of He+ ionization in these metal-poor star-forming galaxies. We suggest that the solution may instead reside in revisions to stellar wind predictions, softer X-ray sources, or very hot products of binary evolution at low metallicity.


2019 ◽  
Vol 491 (2) ◽  
pp. 3013-3021 ◽  
Author(s):  
B Guest ◽  
S Safi-Harb ◽  
A MacMaster ◽  
R Kothes ◽  
B Olmi ◽  
...  

ABSTRACT CTB 87 (G74.9+1.2) is an evolved supernova remnant (SNR) which hosts a peculiar pulsar wind nebula (PWN). The X-ray peak is offset from that observed in radio and lies towards the edge of the radio nebula. The putative pulsar, CXOU J201609.2+371110, was first resolved with Chandra and is surrounded by a compact and a more extended X-ray nebula. Here, we use a deep XMM–Newton observation to examine the morphology and evolutionary stage of the PWN and to search for thermal emission expected from a supernova shell or reverse shock interaction with supernova ejecta. We do not find evidence of thermal X-ray emission from the SNR and place an upper limit on the electron density of 0.05 cm−3 for a plasma temperature kT ∼ 0.8 keV. The morphology and spectral properties are consistent with a ∼20-kyr-old relic PWN expanding into a stellar wind-blown bubble. We also present the first X-ray spectral index map from the PWN and show that we can reproduce its morphology by means of 2D axisymmetric relativistic hydrodynamical simulations.


Sign in / Sign up

Export Citation Format

Share Document