scholarly journals An emission spectrum for WASP-121b measured across the 0.8–1.1 μm wavelength range using the Hubble Space Telescope

2019 ◽  
Vol 488 (2) ◽  
pp. 2222-2234 ◽  
Author(s):  
Thomas Mikal-Evans ◽  
David K Sing ◽  
Jayesh M Goyal ◽  
Benjamin Drummond ◽  
Aarynn L Carter ◽  
...  

Abstract WASP-121b is a transiting gas giant exoplanet orbiting close to its Roche limit, with an inflated radius nearly double that of Jupiter and a dayside temperature comparable to a late M dwarf photosphere. Secondary eclipse observations covering the 1.1–$1.6\, \mu{\rm m}$ wavelength range have revealed an atmospheric thermal inversion on the dayside hemisphere, likely caused by high-altitude absorption at optical wavelengths. Here we present secondary eclipse observations made with the Hubble Space Telescope Wide Field Camera 3 spectrograph that extend the wavelength coverage from $1.1\, \mu{\rm m}$ down to $0.8\, \mu{\rm m}$. To determine the atmospheric properties from the measured eclipse spectrum, we performed a retrieval analysis assuming chemical equilibrium, with the effects of thermal dissociation and ionization included. Our best-fitting model provides a good fit to the data with reduced $\chi ^2_\nu =1.04$. The data diverge from a blackbody spectrum and instead exhibit emission due to H− shortward of $1.1\, \mu{\rm m}$. The best-fitting model does not reproduce a previously reported bump in the spectrum at $1.25\,\mu{\rm m}$, possibly indicating this feature is a statistical fluctuation in the data rather than a VO emission band as had been tentatively suggested. We estimate an atmospheric metallicity of $[{\rm M}/{\rm H}]= {1.09}_{-0.69}^{+0.57}$, and fit for the carbon and oxygen abundances separately, obtaining $[{\rm C}/{\rm H}]= {-0.29}_{-0.48}^{+0.61}$ and $[{\rm O}/{\rm H}]= {0.18}_{-0.60}^{+0.64}$. The corresponding carbon-to-oxygen ratio is ${\rm C/O} = 0.49_{-0.37}^{+0.65}$, which encompasses the solar value of 0.54, but has a large uncertainty.

2020 ◽  
Vol 496 (2) ◽  
pp. 1638-1644 ◽  
Author(s):  
Thomas Mikal-Evans ◽  
David K Sing ◽  
Tiffany Kataria ◽  
Hannah R Wakeford ◽  
Nathan J Mayne ◽  
...  

ABSTRACT We present four new secondary eclipse observations for the ultrahot Jupiter WASP-121b acquired using the Hubble Space Telescope Wide Field Camera 3. The eclipse depth is measured to a median precision of 60 ppm across 28 spectroscopic channels spanning the 1.12–$1.64\, \mu {\rm m}$ wavelength range. This is a considerable improvement to the 90 ppm precision we achieved previously for a single eclipse observation using the same observing set-up. Combining these data with those reported at other wavelengths, a blackbody spectrum for WASP-121b is ruled out at >6σ confidence and we confirm the interpretation of previous retrieval analyses that found the data are best explained by a dayside thermal inversion. The updated spectrum clearly resolves the water emission band at 1.3–$1.6\, \mu {\rm m}$, with higher signal-to-noise than before. It also fails to reproduce a bump in the spectrum at $1.25\, \mu {\rm m}$ derived from the first eclipse observation, which had tentatively been attributed to VO emission. We conclude that the latter was either a statistical fluctuation or a systematic artefact specific to the first eclipse data set.


2020 ◽  
Author(s):  
Billy Edwards ◽  
Quentin Changeat ◽  
William Pluriel ◽  
Niall Whiteford ◽  
Kai Hou Yip ◽  
...  

<p>The Hubble Space Telescope’s Wide Field Camera 3 (WFC3) has been widely used for transmission and emission spectroscopy of exoplanet atmospheres, identifying the main molecular constituents, detecting the presence of clouds and probing their thermal structure. Hubble observations of the emission spectra of a number of ultra-hot Jupiters have led to somewhat surprising results. Initially, these very hot planets were predicted to have inverted temperature pressure profiles due to strong optical absorption by TiO/VO in the upper atmospheres. However, observations of their emission spectra have been inconclusive on their thermal structure and composition. While some datasets show rich spectral features, others can be fit with simple blackbody models.</p> <p>We will present the analysis of Hubble WFC3 transmission and emission spectra for two ultra-hot Jupiters: WASP-76 b and KELT-7 b. In each case, the data was reduced and fitted using the open-source codes Iraclis and Taurex3. Previous studies of the WFC3 transmission spectra of WASP-76 b found hints of TiO and VO or non-grey clouds. Accounting for a fainter stellar companion to WASP-76, we reanalyse this data and show that removing the effects of this background star changes the slope of the spectrum, resulting in these visible absorbers no longer being detected, removing the need for a non-grey cloud model to adequately fit the data but maintaining the strong water feature previously seen. However, our analysis of the emission spectrum suggests the presence of titanium oxide (TiO) and an atmospheric thermal inversion. Meanwhile, our study of KELT-7 b uncovers a rich transmission spectrum which suggests the presence of water and H-. In contrast, the extracted emission spectrum does not contain strong absorption features and, although it is not consistent with a simple blackbody, it can be explained by a varying temperature-pressure profile, collision induced absorption (CIA) and H-. </p> <p>These finding bring new insights into the nature of this intriguing class of planets but more data is required to fully understand them and thus we will also present the anticipated results of further characterisation.</p>


Author(s):  
Knud Jahnke ◽  
Oliver Krause ◽  
Hans-Walter Rix ◽  
Frédéric Courbin ◽  
Adriano Fontana ◽  
...  

AbstractIn the early 2030s, after the end of operations for the epochal Hubble Space Telescope and the long-anticipated James Webb Space Telescope, astrophysics will lose access to a general purpose high-spatial resolution space observatory to cover the UV–optical–NIR wavelength range with a variety of imaging bandpasses and high-multiplexing mid-resolution spectroscopy. This will greatly impact astrophysical “discovery space” at visible wavelengths, in stark contrast to progress at most other wavelengths enabled by groundbreaking new facilities between 2010 and 2030. This capability gap will foreseeably limit progress in a number of fundamental research directions anticipated to be pressing in the 2030’s and beyond such as: What are the histories of star formation and cosmic element production in nearby galaxies? What can we learn about the nature of dark matter from dwarf galaxies? What is the local value of the Hubble Constant? A multi-purpose optical–NIR imaging and multiplexed spectroscopy Workhorse Camera (HWC) onboard NASA’s 4m-class Habitable Exoplanet Observatory (HabEx) space mission would provide access to these required data. HabEx is currently under study by NASA for the US Decadal Survey on Astronomy and Astrophysics 2020, and if selected would launch around 2035. Aside from its direct imaging of Earth-like exoplanets, it will have a general-observatory complement of instrumentation. The versatile Workhorse Camera will provide imaging and R$\sim $ ∼ 1000 spectroscopy from 370nm to 1800nm, diffraction-limited over the whole wavelength range, with simultaneous observations of the visible and NIR. Spectroscopic multiplexing will be achieved through microshutter arrays. All necessary HWC technology is already at Technology Readiness Level 5, hence technological risks are low. HWC has a rough-order-of-magnitude (ROM) cost of 300 M€, and could be European-funded within the cost envelope of an ESA S-class mission in the Voyage 2050 program, with matching funds by national funding agencies to construct HWC by a European instrument consortium. This White Paper is intended to put a European HabEx Workhorse Camera into ESA’s considerations. If ESA shares the wide interest and if HabEx were to be selected by NASA, there would be ample time to identify interested institutes for a European instrument consortium, including MPIA, to design, finance, and build the HabEx Workhorse Camera.


2004 ◽  
Author(s):  
Jennifer A. Turner-Valle ◽  
Joseph Sullivan ◽  
John E. Mentzell ◽  
Robert A. Woodruff

2010 ◽  
Vol 9 (4) ◽  
pp. 265-271 ◽  
Author(s):  
W.B. Sparks ◽  
M. McGrath ◽  
K. Hand ◽  
H.C. Ford ◽  
P. Geissler ◽  
...  

AbstractEuropa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes.


1994 ◽  
Vol 107 ◽  
pp. 1904 ◽  
Author(s):  
Andrew C. Phillips ◽  
Duncan A. Forbes ◽  
Matthew A. Bershady ◽  
Garth D. Illingworth ◽  
David C. Koo

1994 ◽  
Vol 437 ◽  
pp. 67 ◽  
Author(s):  
R. E. Griffiths ◽  
K. U. Ratnatunga ◽  
L. W. Neuschaefer ◽  
S. Casertano ◽  
M. Im ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document