scholarly journals Model-independent constraints on dark energy evolution from low-redshift observations

2019 ◽  
Vol 484 (4) ◽  
pp. 4484-4494 ◽  
Author(s):  
Salvatore Capozziello ◽  
Ruchika ◽  
Anjan A Sen
2021 ◽  
Vol 503 (3) ◽  
pp. 4581-4600
Author(s):  
Orlando Luongo ◽  
Marco Muccino

ABSTRACT We alleviate the circularity problem, whereby gamma-ray bursts are not perfect distance indicators, by means of a new model-independent technique based on Bézier polynomials. We use the well consolidate Amati and Combo correlations. We consider improved calibrated catalogues of mock data from differential Hubble rate points. To get our mock data, we use those machine learning scenarios that well adapt to gamma-ray bursts, discussing in detail how we handle small amounts of data from our machine learning techniques. We explore only three machine learning treatments, i.e. linear regression, neural network, and random forest, emphasizing quantitative statistical motivations behind these choices. Our calibration strategy consists in taking Hubble’s data, creating the mock compilation using machine learning and calibrating the aforementioned correlations through Bézier polynomials with a standard chi-square analysis first and then by means of a hierarchical Bayesian regression procedure. The corresponding catalogues, built up from the two correlations, have been used to constrain dark energy scenarios. We thus employ Markov chain Monte Carlo numerical analyses based on the most recent Pantheon supernova data, baryonic acoustic oscillations, and our gamma-ray burst data. We test the standard ΛCDM model and the Chevallier–Polarski–Linder parametrization. We discuss the recent H0 tension in view of our results. Moreover, we highlight a further severe tension over Ωm and we conclude that a slight evolving dark energy model is possible.


2008 ◽  
Vol 488 (1) ◽  
pp. 47-53 ◽  
Author(s):  
M. Douspis ◽  
Y. Zolnierowski ◽  
A. Blanchard ◽  
A. Riazuelo
Keyword(s):  

2019 ◽  
Vol 490 (2) ◽  
pp. 2071-2085 ◽  
Author(s):  
Weiqiang Yang ◽  
Supriya Pan ◽  
Andronikos Paliathanasis ◽  
Subir Ghosh ◽  
Yabo Wu

ABSTRACT Unified cosmological models have received a lot of attention in astrophysics community for explaining both the dark matter and dark energy evolution. The Chaplygin cosmologies, a well-known name in this group have been investigated matched with observations from different sources. Obviously, Chaplygin cosmologies have to obey restrictions in order to be consistent with the observational data. As a consequence, alternative unified models, differing from Chaplygin model, are of special interest. In the present work, we consider a specific example of such a unified cosmological model, that is quantified by only a single parameter μ, that can be considered as a minimal extension of the Λ-cold dark matter cosmology. We investigate its observational boundaries together with an analysis of the universe at large scale. Our study shows that at early time the model behaves like a dust, and as time evolves, it mimics a dark energy fluid depicting a clear transition from the early decelerating phase to the late cosmic accelerating phase. Finally, the model approaches the cosmological constant boundary in an asymptotic manner. We remark that for the present unified model, the estimations of H0 are slightly higher than its local estimation and thus alleviating the H0 tension.


2018 ◽  
Vol 1043 ◽  
pp. 012019
Author(s):  
Víctor H. Cárdenas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document