Combinations of Standard Pings and Standard Candles: An Effective and Hubble Constant-free Probe of Dark Energy Evolution

2020 ◽  
Vol 901 (2) ◽  
pp. 130
Author(s):  
Lei Zhang ◽  
Zhengxiang Li
2008 ◽  
Vol 488 (1) ◽  
pp. 47-53 ◽  
Author(s):  
M. Douspis ◽  
Y. Zolnierowski ◽  
A. Blanchard ◽  
A. Riazuelo
Keyword(s):  

Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Ivan de Martino

Decaying Dark Energy models modify the background evolution of the most common observables, such as the Hubble function, the luminosity distance and the Cosmic Microwave Background temperature–redshift scaling relation. We use the most recent observationally-determined datasets, including Supernovae Type Ia and Gamma Ray Bursts data, along with H ( z ) and Cosmic Microwave Background temperature versus z data and the reduced Cosmic Microwave Background parameters, to improve the previous constraints on these models. We perform a Monte Carlo Markov Chain analysis to constrain the parameter space, on the basis of two distinct methods. In view of the first method, the Hubble constant and the matter density are left to vary freely. In this case, our results are compatible with previous analyses associated with decaying Dark Energy models, as well as with the most recent description of the cosmological background. In view of the second method, we set the Hubble constant and the matter density to their best fit values obtained by the Planck satellite, reducing the parameter space to two dimensions, and improving the existent constraints on the model’s parameters. Our results suggest that the accelerated expansion of the Universe is well described by the cosmological constant, and we argue that forthcoming observations will play a determinant role to constrain/rule out decaying Dark Energy.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Weiqiang Yang ◽  
Eleonora Di Valentino ◽  
Supriya Pan ◽  
Arman Shafieloo ◽  
Xiaolei Li

2019 ◽  
Vol 490 (2) ◽  
pp. 2071-2085 ◽  
Author(s):  
Weiqiang Yang ◽  
Supriya Pan ◽  
Andronikos Paliathanasis ◽  
Subir Ghosh ◽  
Yabo Wu

ABSTRACT Unified cosmological models have received a lot of attention in astrophysics community for explaining both the dark matter and dark energy evolution. The Chaplygin cosmologies, a well-known name in this group have been investigated matched with observations from different sources. Obviously, Chaplygin cosmologies have to obey restrictions in order to be consistent with the observational data. As a consequence, alternative unified models, differing from Chaplygin model, are of special interest. In the present work, we consider a specific example of such a unified cosmological model, that is quantified by only a single parameter μ, that can be considered as a minimal extension of the Λ-cold dark matter cosmology. We investigate its observational boundaries together with an analysis of the universe at large scale. Our study shows that at early time the model behaves like a dust, and as time evolves, it mimics a dark energy fluid depicting a clear transition from the early decelerating phase to the late cosmic accelerating phase. Finally, the model approaches the cosmological constant boundary in an asymptotic manner. We remark that for the present unified model, the estimations of H0 are slightly higher than its local estimation and thus alleviating the H0 tension.


2020 ◽  
Vol 497 (3) ◽  
pp. 3191-3203 ◽  
Author(s):  
Shulei Cao ◽  
Joseph Ryan ◽  
Bharat Ratra

ABSTRACT We use H ii starburst galaxy apparent magnitude measurements to constrain cosmological parameters in six cosmological models. A joint analysis of H ii galaxy, quasar angular size, baryon acoustic oscillations peak length scale, and Hubble parameter measurements result in relatively model-independent and restrictive estimates of the current values of the non-relativistic matter density parameter $\Omega _{\rm m_0}$ and the Hubble constant H0. These estimates favour a 2.0–3.4σ (depending on cosmological model) lower H0 than what is measured from the local expansion rate. The combined data are consistent with dark energy being a cosmological constant and with flat spatial hypersurfaces, but do not strongly rule out mild dark energy dynamics or slightly non-flat spatial geometries.


2019 ◽  
Vol 486 (2) ◽  
pp. 2184-2196 ◽  
Author(s):  
E Macaulay ◽  
R C Nichol ◽  
D Bacon ◽  
D Brout ◽  
T M Davis ◽  
...  

ABSTRACT We present an improved measurement of the Hubble constant (H0) using the ‘inverse distance ladder’ method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing distance measurements of 122 low-redshift (z < 0.07) SNe Ia (Low-z) and measurements of Baryon Acoustic Oscillations (BAOs). Whereas traditional measurements of H0 with SNe Ia use a distance ladder of parallax and Cepheid variable stars, the inverse distance ladder relies on absolute distance measurements from the BAOs to calibrate the intrinsic magnitude of the SNe Ia. We find H0 = 67.8 ± 1.3 km s−1 Mpc−1 (statistical and systematic uncertainties, 68 per cent confidence). Our measurement makes minimal assumptions about the underlying cosmological model, and our analysis was blinded to reduce confirmation bias. We examine possible systematic uncertainties and all are below the statistical uncertainties. Our H0 value is consistent with estimates derived from the Cosmic Microwave Background assuming a ΛCDM universe.


2019 ◽  
Vol 484 (4) ◽  
pp. 4484-4494 ◽  
Author(s):  
Salvatore Capozziello ◽  
Ruchika ◽  
Anjan A Sen

2018 ◽  
Vol 1043 ◽  
pp. 012019
Author(s):  
Víctor H. Cárdenas
Keyword(s):  

2020 ◽  
Vol 101 (10) ◽  
Author(s):  
Giampaolo Benevento ◽  
Wayne Hu ◽  
Marco Raveri

Sign in / Sign up

Export Citation Format

Share Document