scholarly journals Fundamental parameters and evolutionary status of the magnetic chemically peculiar stars HD 188041 (V1291 Aquilae), HD 111133 (EP Virginis), and HD 204411: spectroscopy versus interferometry

2019 ◽  
Vol 488 (2) ◽  
pp. 2343-2356 ◽  
Author(s):  
A Romanovskaya ◽  
T Ryabchikova ◽  
D Shulyak ◽  
K Perraut ◽  
G Valyavin ◽  
...  

ABSTRACT The determination of fundamental parameters of stars is one of the main tasks of astrophysics. For magnetic chemically peculiar stars, this problem is complicated by the anomalous chemical composition of their atmospheres, which requires special analysis methods. We present the results of the effective temperature, surface gravity, abundance, and radius determinations for three CP stars HD 188041, HD 111133, and HD 204411. Our analysis is based on a self-consistent model fitting of high-resolution spectra and spectrophotometric observations over a wide wavelength range, taking into account the anomalous chemical composition of atmospheres and the inhomogeneous vertical distribution for three chemical elements: Ca, Cr, and Fe. For two stars, HD 188041 and HD 204411, we also performed interferometric observations that provided us with the direct estimates of stellar radii. Comparison of the radii determined from the analysis of spectroscopic/spectrophotometric observations with direct measurements of the radii by interferometry methods for seven CP stars shows that the radii agree within the limits of measurement errors, which proves indirect spectroscopic analysis capable of proving reliable determinations of the fundamental parameters of fainter Ap stars that are not possible to study with modern interferometric facilities.

1995 ◽  
Vol 10 ◽  
pp. 582-584
Author(s):  
Thierry Lanz

Similarly to many astrophysical studies, a spectroscopic analysis of chemically peculiar (CP) stars requires extensive, accurate sets of atomic data. Our purpose is to show here that the CP stars can also serve as a laboratory for checking the accuracy of the atomic data. Despite additional challenges toward modeling the atmospheres of the CP stars, they have a definite advantage as laboratories for atomic physics: their strong chemical anomalies make some spectral features especially prominent in their spectra, which can be better checked against theoretical predictions. This statement may be applied to both to stars exhibiting large over- or under- abundances. We discuss several examples how CP stars can be used along this idea.We will focus here on the chemically peculiar stars of the upper main-sequence, which encompass the classical Am and Ap stars. Chemical anomalies are widespread on the main sequence for spectral types B. to F. These stars mostly show weak helium lines, and abnormally strong lines from iron-peak and heavier (e.g. the lanthanides) elements. A classical characteristics of Am stars in their weak Ca lines, while Ap stars may exhibit either strong Si or Hg lines. CP stars can be grouped according to the most obvious line strength anomalies, which are related to the effective temperature and to the presence or the absence of a magnetic field. In magnetic CP stars, the chemical elements are not uniformly distributed over the stellar surface, but they seem to be concentrated (or depleted) in rings or polar caps following the magnetic geometry. Magnetic CP stars have also broad absorption features in their ultraviolet and visible spectra that can used photometric peculiarity criteria. Using the new extensive photoionization data from the Opacity Project (OP), the UV absorption features can be identified and the UV spectrum can be well reproduced.


2008 ◽  
Vol 4 (S252) ◽  
pp. 347-348
Author(s):  
J. Krtička ◽  
Z. Mikulášek ◽  
J. Zverko ◽  
J. Žižňovský ◽  
P. Zvěřina

AbstractThe magnetic chemically peculiar stars exhibit both inhomogeneous horizontal distribution of chemical elements on their surfaces and the light variability. We show that the observed light variability of these stars can be successfully simulated using models of their stellar atmospheres and adopting the observed surface distribution of elements. The most important elements that influence the light variability are silicon, iron, and helium.


1982 ◽  
Vol 18 (1) ◽  
pp. 343-360 ◽  
Author(s):  
W.K. Bonsack

During the interval covered by this report, Commission 29 has sponsored or cosponsored the following IAU meetings: Symposium 98 on “Be Stars,” Munich, FRG, April 1981; Colloquium 59, “Effects of Mass-Loss on Stellar Evolution,” Trieste, Italy, September 1980; and Colloquim 70, “The Nature of Symbiotic Stars,” Haute-Provence, France, August 1981. In addition, Commission 29, through its Working Group on Ap Stars, collaborated in the organization of the 23rd Liege International Astrophysical Symposium on Upper Main-Sequence Chemically Peculiar Stars. Several IAU symposia and colloquia proposed for 1982 and 1983 are also cosponsored by Commission 29.


2014 ◽  
Vol 9 (S307) ◽  
pp. 365-366
Author(s):  
J. D. Bailey ◽  
J. D. Landstreet ◽  
S. Bagnulo

AbstractThe stars of the middle main-sequence have relatively quiescent outer layers, and unusual chemical abundance patterns may develop in their atmospheres, revealing the action of such subsurface phenomena as gravitational settling and radiatively driven levitation of trace elements, and their competition with mixing processes such as turbulent diffusion. We report the discovery of the time evolution of such chemical tracers through the main-sequence lifetime of magnetic chemically peculiar stars.


2020 ◽  
Vol 500 (2) ◽  
pp. 2577-2589
Author(s):  
O Kochukhov ◽  
C Johnston ◽  
J Labadie-Bartz ◽  
S Shetye ◽  
T A Ryabchikova ◽  
...  

ABSTRACT The late B-type star V772 Cas (HD 10260) was previously suspected to be a rare example of a magnetic chemically peculiar star in an eclipsing binary system. Photometric observations of this star obtained by the TESS satellite show clear eclipses with a period of 5.0137 d accompanied by a significant out-of-eclipse variation with the same period. High-resolution spectroscopy reveals V772 Cas to be an SB1 system, with the primary component rotating about a factor two slower than the orbital period and showing chemical peculiarities typical of non-magnetic HgMn chemically peculiar stars. This is only the third eclipsing HgMn star known and, owing to its brightness, is one of the very few eclipsing binaries with chemically peculiar components accessible to detailed follow-up studies. Taking advantage of the photometric and spectroscopic observations available for V772 Cas, we performed modelling of this system with the phoebe code. This analysis provided fundamental parameters of the components and demonstrated that the out-of-eclipse brightness variation is explained by the ellipsoidal shape of the evolved, asynchronously rotating primary. This is the first HgMn star for which such variability has been definitively identified.


2020 ◽  
Vol 642 ◽  
pp. A101
Author(s):  
K. Perraut ◽  
M. Cunha ◽  
A. Romanovskaya ◽  
D. Shulyak ◽  
T. Ryabchikova ◽  
...  

Context. The variety of physical processes at play in chemically peculiar stars makes it difficult to determine their fundamental parameters. In particular, for the magnetic ones, called Ap stars, the strong magnetic fields and the induced spotted stellar surfaces may lead to biased effective temperatures when these values are derived through spectro-photometry. Aims. We propose to benefit from the exquisite angular resolution provided by long-baseline interferometry in the visible to determine the accurate angular diameters of a number of Ap stars, and thus estimate their radii by a method that is as independent as possible of atmospheric models. Methods. We used the visible spectrograph VEGA at the CHARA interferometric array to complete the sample of Ap stars currently observable with this technique. We estimated the angular diameter and radius of six new targets. We estimated their bolometric flux based solely on observational spectroscopic and photometric data to derive nearly model-independent luminosities and effective temperatures. Results. We extend to 14 the number of Ap stars for which interferometric angular diameters have been measured. The fundamental parameters we derived for the complete Ap sample are compared with those obtained through a self-consistent spectroscopic analysis. Based on a model fitting approach of high-resolution spectra and spectro-photometric observations over a wide wavelength range, this method takes into account the anomalous chemical composition of the atmospheres and the inhomogeneous vertical distribution for different chemical elements. Regarding both the radii and the effective temperatures, the derived values from our interferometric observations and from self-consistent modelling are consistent within better than 2σ for nine targets out of ten. We thus benchmark nine Ap stars for effective temperatures ranging from 7200 and 9100 K, and luminosities ranging between 7 L⊙ and 86 L⊙. Conclusions. These results will be key for the future derivation of accurate radii and other fundamental parameters of fainter peculiar stars for which both the sensitivity and the angular resolution of the current interferometers are not sufficient. Within the context of the observations of Ap stars with the Transiting Exoplanet Survey Satellite (TESS), these interferometric measurements are crucial for testing the mechanism of pulsation excitation at work in these peculiar stars. In particular, our interferometric measurements provide accurate locations in the Hertzsprung-Russell diagram for hot Ap stars among which pulsations may be searched for with TESS, putting to test the blue edge of the theoretical instability strip. These accurate locations could be used to derive masses and ages of these stars through a specific grid of models, and to test correlations between the properties of these peculiar stars and their evolutionary state.


1988 ◽  
Vol 108 ◽  
pp. 2-2
Author(s):  
Jun Jugaku

AbstractAlthough once it was thought that main-sequence stars are remarkably homogeneous with respect to their chemical composition, the upper main-sequence stars (30000 > Te > 7000) show a variaety of chemically peculiar stars besides the so-called normal stars. Those include the Am, Ap, λ Bootis, He-deficient, and He-rich stars. This review summarizes the current data, which are necessary to construct and test the theoretical models of these stars. In the second half of the review we concentrate on Li. In the lower main-sequecnce stars abundances of Li have been determined in hundreds of stars. Some of the remarkable results are: (1) A uniform upper abundance value irrespective of stellar effective temperature, (2) abundance gap in the F stars of the Hyades, and (3) increasing depletion with smaller stellar mass for the Hyades.


2010 ◽  
Vol 6 (S272) ◽  
pp. 517-518
Author(s):  
Jiri Krtička ◽  
Hana Marková ◽  
Zdenek Mikulášek ◽  
Theresa Lüftinger ◽  
David Bohlender ◽  
...  

AbstractThe nature of the light variations of chemically peculiar stars was studied in detail only in a very few cases. To better understand the mechanisms of light variability of these stars, we study the light variations of the well-known magnetic chemically peculiar star CU Vir and one of the least amplitude variable stars HD 64740. We show that the light variability of these stars is induced by flux redistribution in spots of enhanced abundance of chemical elements (e.g., helium, silicon, iron or chromium), and by the stellar rotation. We conclude that this is a promising model for the explanation of the light variability of most chemically peculiar stars.


Author(s):  
G. Alecian

The chemical composition measured in stellar atmospheres is not necessarily the same as in deeper layers (outside the core). Indeed, for a significant fraction of main-sequence G to B types stars the discrepancies between superficial and internal abundances go from a few percent (for the coldest of these stars) to huge factors (for hot chemically peculiar stars). This is due to atomic diffusion process, which may produces elements segregation at some stages of the stellar evolution.


Sign in / Sign up

Export Citation Format

Share Document